finetune.py 18.4 KB
Newer Older
1
2
#!/usr/bin/env python

3
4
5
6
import argparse
import glob
import logging
import os
7
import sys
8
import time
9
from collections import defaultdict
10
11
from pathlib import Path
from typing import Dict, List, Tuple
12

13
14
import numpy as np
import pytorch_lightning as pl
15
16
17
import torch
from torch.utils.data import DataLoader

18
from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
19
20
from transformers import MBartTokenizer, T5ForConditionalGeneration
from transformers.modeling_bart import shift_tokens_right
21
22
23
24
25
26
27
28
from utils import (
    ROUGE_KEYS,
    LegacySeq2SeqDataset,
    Seq2SeqDataset,
    assert_all_frozen,
    calculate_bleu,
    calculate_rouge,
    flatten_list,
29
    freeze_embeds,
30
31
32
33
34
35
    freeze_params,
    get_git_info,
    label_smoothed_nll_loss,
    lmap,
    pickle_save,
    save_git_info,
36
    save_json,
37
38
    use_task_specific_params,
)
39
40


41
42
43
44
45
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train  # noqa


46
47
48
logger = logging.getLogger(__name__)


49
50
51
class SummarizationModule(BaseTransformer):
    mode = "summarization"
    loss_names = ["loss"]
52
    metric_names = ROUGE_KEYS
53
    default_val_metric = "rouge2"
54

55
    def __init__(self, hparams, **kwargs):
56
57
        if hparams.sortish_sampler and hparams.gpus > 1:
            hparams.replace_sampler_ddp = False
58
59
60
61
62
63
        elif hparams.max_tokens_per_batch is not None:
            if hparams.gpus > 1:
                raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training")
            if hparams.sortish_sampler:
                raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously")

64
65
66
        super().__init__(hparams, num_labels=None, mode=self.mode, **kwargs)
        use_task_specific_params(self.model, "summarization")
        save_git_info(self.hparams.output_dir)
67
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
68
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
69
        pickle_save(self.hparams, self.hparams_save_path)
70
        self.step_count = 0
71
        self.metrics = defaultdict(list)
72
73
        self.model_type = self.config.model_type
        self.vocab_size = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size
74

75
76
77
        self.dataset_kwargs: dict = dict(
            data_dir=self.hparams.data_dir,
            max_source_length=self.hparams.max_source_length,
78
            prefix=self.model.config.prefix or "",
79
        )
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"
        if self.hparams.freeze_embeds:
95
            freeze_embeds(self.model)
96
        if self.hparams.freeze_encoder:
97
98
99
            freeze_params(self.model.get_encoder())
            assert_all_frozen(self.model.get_encoder())

100
        self.hparams.git_sha = get_git_info()["repo_sha"]
101
        self.num_workers = hparams.num_workers
102
        self.decoder_start_token_id = None  # default to config
103
104
105
        if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
            self.model.config.decoder_start_token_id = self.decoder_start_token_id
106
107
108
        self.dataset_class = (
            Seq2SeqDataset if hasattr(self.tokenizer, "prepare_seq2seq_batch") else LegacySeq2SeqDataset
        )
109
        self.already_saved_batch = False
110
        self.eval_beams = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
111
112
113
114
        if self.hparams.eval_max_gen_length is not None:
            self.eval_max_length = self.hparams.eval_max_gen_length
        else:
            self.eval_max_length = self.model.config.max_length
115
        self.val_metric = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
116

117
118
119
120
121
122
123
124
125
126
127
    def save_readable_batch(self, batch: Dict[str, torch.Tensor]) -> Dict[str, List[str]]:
        """A debugging utility"""
        readable_batch = {
            k: self.tokenizer.batch_decode(v.tolist()) if "mask" not in k else v.shape for k, v in batch.items()
        }
        save_json(readable_batch, Path(self.output_dir) / "text_batch.json")
        save_json({k: v.tolist() for k, v in batch.items()}, Path(self.output_dir) / "tok_batch.json")

        self.already_saved_batch = True
        return readable_batch

128
129
130
131
132
133
    def forward(self, input_ids, **kwargs):
        return self.model(input_ids, **kwargs)

    def ids_to_clean_text(self, generated_ids: List[int]):
        gen_text = self.tokenizer.batch_decode(
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
134
        )
135
        return lmap(str.strip, gen_text)
136

137
    def _step(self, batch: dict) -> Tuple:
138
        pad_token_id = self.tokenizer.pad_token_id
139
140
        src_ids, src_mask = batch["input_ids"], batch["attention_mask"]
        tgt_ids = batch["labels"]
141
        if isinstance(self.model, T5ForConditionalGeneration):
142
            decoder_input_ids = self.model._shift_right(tgt_ids)
143
        else:
144
            decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
145
146
147
        if not self.already_saved_batch:  # This would be slightly better if it only happened on rank zero
            batch["decoder_input_ids"] = decoder_input_ids
            self.save_readable_batch(batch)
148

149
150
        outputs = self(src_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, use_cache=False)
        lm_logits = outputs[0]
151
        if self.hparams.label_smoothing == 0:
152
            # Same behavior as modeling_bart.py, besides ignoring pad_token_id
153
            ce_loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
154

155
            assert lm_logits.shape[-1] == self.vocab_size
156
            loss = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
157
        else:
158
            lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
159
            loss, nll_loss = label_smoothed_nll_loss(
160
                lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
161
            )
162
163
        return (loss,)

164
165
166
167
    @property
    def pad(self) -> int:
        return self.tokenizer.pad_token_id

168
169
    def training_step(self, batch, batch_idx) -> Dict:
        loss_tensors = self._step(batch)
170

171
        logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
172
        # tokens per batch
173
        logs["tpb"] = batch["input_ids"].ne(self.pad).sum() + batch["labels"].ne(self.pad).sum()
174
175
176
177
        logs["bs"] = batch["input_ids"].shape[0]
        logs["src_pad_tok"] = batch["input_ids"].eq(self.pad).sum()
        logs["src_pad_frac"] = batch["input_ids"].eq(self.pad).float().mean()
        # TODO(SS): make a wandb summary metric for this
178
179
180
181
182
        return {"loss": loss_tensors[0], "log": logs}

    def validation_step(self, batch, batch_idx) -> Dict:
        return self._generative_step(batch)

183
    def validation_epoch_end(self, outputs, prefix="val") -> Dict:
184

185
186
187
        self.step_count += 1
        losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
        loss = losses["loss"]
188
189
190
191
192
193
194
195
196
197
198
        generative_metrics = {
            k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
        }
        metric_val = (
            generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
        )
        metric_tensor: torch.FloatTensor = torch.tensor(metric_val).type_as(loss)
        generative_metrics.update({k: v.item() for k, v in losses.items()})
        losses.update(generative_metrics)
        all_metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
        all_metrics["step_count"] = self.step_count
199
        self.metrics[prefix].append(all_metrics)  # callback writes this to self.metrics_save_path
200
        preds = flatten_list([x["preds"] for x in outputs])
201
202
203
204
205
206
        return {
            "log": all_metrics,
            "preds": preds,
            f"{prefix}_loss": loss,
            f"{prefix}_{self.val_metric}": metric_tensor,
        }
207
208
209

    def calc_generative_metrics(self, preds, target) -> Dict:
        return calculate_rouge(preds, target)
210

211
    def _generative_step(self, batch: dict) -> dict:
212
        t0 = time.time()
213
214

        # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
215
        generated_ids = self.model.generate(
216
217
            batch["input_ids"],
            attention_mask=batch["attention_mask"],
218
219
            use_cache=True,
            decoder_start_token_id=self.decoder_start_token_id,
220
            num_beams=self.eval_beams,
221
            max_length=self.eval_max_length,
222
        )
223
224
        gen_time = (time.time() - t0) / batch["input_ids"].shape[0]
        preds: List[str] = self.ids_to_clean_text(generated_ids)
225
        target: List[str] = self.ids_to_clean_text(batch["labels"])
226
227
        loss_tensors = self._step(batch)
        base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
228
        rouge: Dict = self.calc_generative_metrics(preds, target)
229
        summ_len = np.mean(lmap(len, generated_ids))
230
        base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **rouge)
231
        return base_metrics
232

233
234
    def test_step(self, batch, batch_idx):
        return self._generative_step(batch)
235
236

    def test_epoch_end(self, outputs):
237
        return self.validation_epoch_end(outputs, prefix="test")
238

239
    def get_dataset(self, type_path) -> Seq2SeqDataset:
240
241
        n_obs = self.n_obs[type_path]
        max_target_length = self.target_lens[type_path]
242
        dataset = self.dataset_class(
243
244
245
246
247
248
249
250
            self.tokenizer,
            type_path=type_path,
            n_obs=n_obs,
            max_target_length=max_target_length,
            **self.dataset_kwargs,
        )
        return dataset

251
    def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
252
        dataset = self.get_dataset(type_path)
253
254

        if self.hparams.sortish_sampler and type_path != "test":
255
            sampler = dataset.make_sortish_sampler(batch_size, distributed=self.hparams.gpus > 1)
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=dataset.collate_fn,
                shuffle=False,
                num_workers=self.num_workers,
                sampler=sampler,
            )

        elif self.hparams.max_tokens_per_batch is not None and type_path != "test":
            batch_sampler = dataset.make_dynamic_sampler(
                self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1
            )
            return DataLoader(
                dataset,
                batch_sampler=batch_sampler,
                collate_fn=dataset.collate_fn,
                # shuffle=False,
                num_workers=self.num_workers,
                # batch_size=None,
            )
        else:
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=dataset.collate_fn,
                shuffle=shuffle,
                num_workers=self.num_workers,
                sampler=None,
            )
286
287

    def train_dataloader(self) -> DataLoader:
288
        dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
289
290
        return dataloader

291
292
    def val_dataloader(self) -> DataLoader:
        return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
293

294
295
    def test_dataloader(self) -> DataLoader:
        return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)
296
297
298
299

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        BaseTransformer.add_model_specific_args(parser, root_dir)
300
        add_generic_args(parser, root_dir)
301
        parser.add_argument(
302
            "--max_source_length",
303
304
305
306
307
            default=1024,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
308
309
310
311
312
313
314
        parser.add_argument(
            "--max_target_length",
            default=56,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        parser.add_argument(
            "--val_max_target_length",
            default=142,  # these defaults are optimized for CNNDM. For xsum, see README.md.
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--test_max_target_length",
            default=142,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument("--freeze_encoder", action="store_true")
        parser.add_argument("--freeze_embeds", action="store_true")
        parser.add_argument("--sortish_sampler", action="store_true", default=False)
332
        parser.add_argument("--max_tokens_per_batch", type=int, default=None)
333
        parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
334
335
336
        parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_val", type=int, default=500, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
337
338
339
        parser.add_argument(
            "--task", type=str, default="summarization", required=False, help="# examples. -1 means use all."
        )
340
        parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
341
342
        parser.add_argument("--src_lang", type=str, default="", required=False)
        parser.add_argument("--tgt_lang", type=str, default="", required=False)
343
        parser.add_argument("--eval_beams", type=int, default=None, required=False)
344
345
346
        parser.add_argument(
            "--val_metric", type=str, default=None, required=False, choices=["bleu", "rouge2", "loss", None]
        )
347
        parser.add_argument("--eval_max_gen_length", type=int, default=None, help="never generate more than n tokens")
348
        parser.add_argument("--save_top_k", type=int, default=1, required=False, help="How many checkpoints to save")
349
350
351
352
353
354
355
        parser.add_argument(
            "--early_stopping_patience",
            type=int,
            default=-1,
            required=False,
            help="-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So val_check_interval will effect it.",
        )
356
357
358
        return parser


359
360
361
362
class TranslationModule(SummarizationModule):
    mode = "translation"
    loss_names = ["loss"]
    metric_names = ["bleu"]
363
    default_val_metric = "bleu"
364

365
366
367
368
369
    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang

370
    def calc_generative_metrics(self, preds, target) -> dict:
371
        return calculate_bleu(preds, target)
372
373


374
375
376
377
378
def main(args, model=None) -> SummarizationModule:
    Path(args.output_dir).mkdir(exist_ok=True)
    if len(os.listdir(args.output_dir)) > 3 and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if model is None:
379
        if "summarization" in args.task:
380
381
382
            model: SummarizationModule = SummarizationModule(args)
        else:
            model: SummarizationModule = TranslationModule(args)
383
    dataset = Path(args.data_dir).name
384
    if (
385
        args.logger_name == "default"
386
387
388
389
390
        or args.fast_dev_run
        or str(args.output_dir).startswith("/tmp")
        or str(args.output_dir).startswith("/var")
    ):
        logger = True  # don't pollute wandb logs unnecessarily
391
    elif args.logger_name == "wandb":
392
393
        from pytorch_lightning.loggers import WandbLogger

394
395
        project = os.environ.get("WANDB_PROJECT", dataset)
        logger = WandbLogger(name=model.output_dir.name, project=project)
396

397
    elif args.logger_name == "wandb_shared":
398
399
        from pytorch_lightning.loggers import WandbLogger

400
        logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
401
402
403
404
405

    if args.early_stopping_patience >= 0:
        es_callback = get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
    else:
        es_callback = False
406
407

    lower_is_better = args.val_metric == "loss"
408
409
410
411
    trainer: pl.Trainer = generic_train(
        model,
        args,
        logging_callback=Seq2SeqLoggingCallback(),
412
413
414
        checkpoint_callback=get_checkpoint_callback(
            args.output_dir, model.val_metric, args.save_top_k, lower_is_better
        ),
415
        early_stopping_callback=es_callback,
416
417
        logger=logger,
    )
418
    pickle_save(model.hparams, model.output_dir / "hparams.pkl")
419
420
421
422
423
424
425
426
427
    if not args.do_predict:
        return model

    model.hparams.test_checkpoint = ""
    checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt"), recursive=True)))
    if checkpoints:
        model.hparams.test_checkpoint = checkpoints[-1]
        trainer.resume_from_checkpoint = checkpoints[-1]
    trainer.logger.log_hyperparams(model.hparams)
428
429
430

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
431
    return model
432
433
434
435


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
436
    parser = pl.Trainer.add_argparse_args(parser)
437
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
438

439
440
441
    args = parser.parse_args()

    main(args)