finetune.py 18.1 KB
Newer Older
1
2
3
4
5
import argparse
import glob
import logging
import os
import time
6
from collections import defaultdict
7
8
from pathlib import Path
from typing import Dict, List, Tuple
9

10
11
import numpy as np
import pytorch_lightning as pl
12
13
14
import torch
from torch.utils.data import DataLoader

15
from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
16
from lightning_base import BaseTransformer, add_generic_args, generic_train
17
18
from transformers import MBartTokenizer, T5ForConditionalGeneration
from transformers.modeling_bart import shift_tokens_right
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from utils import (
    ROUGE_KEYS,
    LegacySeq2SeqDataset,
    Seq2SeqDataset,
    assert_all_frozen,
    calculate_bleu,
    calculate_rouge,
    flatten_list,
    freeze_params,
    get_git_info,
    label_smoothed_nll_loss,
    lmap,
    pickle_save,
    save_git_info,
    save_json,
    use_task_specific_params,
)
36
37


38
39
40
logger = logging.getLogger(__name__)


41
42
43
class SummarizationModule(BaseTransformer):
    mode = "summarization"
    loss_names = ["loss"]
44
    metric_names = ROUGE_KEYS
45
    default_val_metric = "rouge2"
46

47
    def __init__(self, hparams, **kwargs):
48
49
        if hparams.sortish_sampler and hparams.gpus > 1:
            hparams.replace_sampler_ddp = False
50
51
52
53
54
55
        elif hparams.max_tokens_per_batch is not None:
            if hparams.gpus > 1:
                raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training")
            if hparams.sortish_sampler:
                raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously")

56
57
58
        super().__init__(hparams, num_labels=None, mode=self.mode, **kwargs)
        use_task_specific_params(self.model, "summarization")
        save_git_info(self.hparams.output_dir)
59
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
60
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
61
        pickle_save(self.hparams, self.hparams_save_path)
62
        self.step_count = 0
63
        self.metrics = defaultdict(list)
64

65
66
67
        self.dataset_kwargs: dict = dict(
            data_dir=self.hparams.data_dir,
            max_source_length=self.hparams.max_source_length,
68
            prefix=self.model.config.prefix or "",
69
        )
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"
        if self.hparams.freeze_embeds:
            self.freeze_embeds()
        if self.hparams.freeze_encoder:
87
88
89
            freeze_params(self.model.get_encoder())
            assert_all_frozen(self.model.get_encoder())

90
        self.hparams.git_sha = get_git_info()["repo_sha"]
91
        self.num_workers = hparams.num_workers
92
        self.decoder_start_token_id = None  # default to config
93
94
95
        if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
            self.model.config.decoder_start_token_id = self.decoder_start_token_id
96
97
98
        self.dataset_class = (
            Seq2SeqDataset if hasattr(self.tokenizer, "prepare_seq2seq_batch") else LegacySeq2SeqDataset
        )
99
100
        self.eval_beams = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
        assert self.eval_beams >= 1, f"got self.eval_beams={self.eval_beams}. Need an integer > 1"
101
102
103
104
        if self.hparams.eval_max_gen_length is not None:
            self.eval_max_length = self.hparams.eval_max_gen_length
        else:
            self.eval_max_length = self.model.config.max_length
105
        self.val_metric = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
106
107
108

    def freeze_embeds(self):
        """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
109
        try:
110
111
112
113
            freeze_params(self.model.model.shared)
            for d in [self.model.model.encoder, self.model.model.decoder]:
                freeze_params(d.embed_positions)
                freeze_params(d.embed_tokens)
114
        except AttributeError:
115
116
117
118
119
120
121
122
123
124
            freeze_params(self.model.shared)
            for d in [self.model.encoder, self.model.decoder]:
                freeze_params(d.embed_tokens)

    def forward(self, input_ids, **kwargs):
        return self.model(input_ids, **kwargs)

    def ids_to_clean_text(self, generated_ids: List[int]):
        gen_text = self.tokenizer.batch_decode(
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
125
        )
126
        return lmap(str.strip, gen_text)
127

128
    def _step(self, batch: dict) -> Tuple:
129
        pad_token_id = self.tokenizer.pad_token_id
130
131
        src_ids, src_mask = batch["input_ids"], batch["attention_mask"]
        tgt_ids = batch["labels"]
132
        if isinstance(self.model, T5ForConditionalGeneration):
133
            decoder_input_ids = self.model._shift_right(tgt_ids)
134
        else:
135
            decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
136

137
138
        outputs = self(src_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, use_cache=False)
        lm_logits = outputs[0]
139
        if self.hparams.label_smoothing == 0:
140
            # Same behavior as modeling_bart.py, besides ignoring pad_token_id
141
            ce_loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
142

143
            assert lm_logits.shape[-1] == self.model.config.vocab_size
144
            loss = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
145
        else:
146
            lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
147
            loss, nll_loss = label_smoothed_nll_loss(
148
                lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
149
            )
150
151
        return (loss,)

152
153
154
155
    @property
    def pad(self) -> int:
        return self.tokenizer.pad_token_id

156
157
    def training_step(self, batch, batch_idx) -> Dict:
        loss_tensors = self._step(batch)
158

159
        logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
160
        # tokens per batch
161
        logs["tpb"] = batch["input_ids"].ne(self.pad).sum() + batch["labels"].ne(self.pad).sum()
162
163
164
165
        logs["bs"] = batch["input_ids"].shape[0]
        logs["src_pad_tok"] = batch["input_ids"].eq(self.pad).sum()
        logs["src_pad_frac"] = batch["input_ids"].eq(self.pad).float().mean()
        # TODO(SS): make a wandb summary metric for this
166
167
168
169
170
        return {"loss": loss_tensors[0], "log": logs}

    def validation_step(self, batch, batch_idx) -> Dict:
        return self._generative_step(batch)

171
    def validation_epoch_end(self, outputs, prefix="val") -> Dict:
172
173
174
        self.step_count += 1
        losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
        loss = losses["loss"]
175
176
177
178
179
180
181
182
183
184
185
186
        generative_metrics = {
            k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
        }
        metric_val = (
            generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
        )
        metric_tensor: torch.FloatTensor = torch.tensor(metric_val).type_as(loss)
        generative_metrics.update({k: v.item() for k, v in losses.items()})
        losses.update(generative_metrics)
        all_metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
        all_metrics["step_count"] = self.step_count
        self.save_metrics(all_metrics, prefix)  # writes to self.metrics_save_path
187
        preds = flatten_list([x["preds"] for x in outputs])
188
189
190
191
192
193
        return {
            "log": all_metrics,
            "preds": preds,
            f"{prefix}_loss": loss,
            f"{prefix}_{self.val_metric}": metric_tensor,
        }
194
195
196
197

    def save_metrics(self, latest_metrics, type_path) -> None:
        self.metrics[type_path].append(latest_metrics)
        save_json(self.metrics, self.metrics_save_path)
198

199
200
    def calc_generative_metrics(self, preds, target) -> Dict:
        return calculate_rouge(preds, target)
201

202
    def _generative_step(self, batch: dict) -> dict:
203
        t0 = time.time()
204
205

        # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
206
        generated_ids = self.model.generate(
207
208
            batch["input_ids"],
            attention_mask=batch["attention_mask"],
209
210
            use_cache=True,
            decoder_start_token_id=self.decoder_start_token_id,
211
            num_beams=self.eval_beams,
212
            max_length=self.eval_max_length,
213
        )
214
215
        gen_time = (time.time() - t0) / batch["input_ids"].shape[0]
        preds: List[str] = self.ids_to_clean_text(generated_ids)
216
        target: List[str] = self.ids_to_clean_text(batch["labels"])
217
218
        loss_tensors = self._step(batch)
        base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
219
        rouge: Dict = self.calc_generative_metrics(preds, target)
220
        summ_len = np.mean(lmap(len, generated_ids))
221
        base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **rouge)
222
        return base_metrics
223

224
225
    def test_step(self, batch, batch_idx):
        return self._generative_step(batch)
226
227

    def test_epoch_end(self, outputs):
228
        return self.validation_epoch_end(outputs, prefix="test")
229

230
    def get_dataset(self, type_path) -> Seq2SeqDataset:
231
232
        n_obs = self.n_obs[type_path]
        max_target_length = self.target_lens[type_path]
233
        dataset = self.dataset_class(
234
235
236
237
238
239
240
241
            self.tokenizer,
            type_path=type_path,
            n_obs=n_obs,
            max_target_length=max_target_length,
            **self.dataset_kwargs,
        )
        return dataset

242
    def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
243
        dataset = self.get_dataset(type_path)
244
245

        if self.hparams.sortish_sampler and type_path != "test":
246
            sampler = dataset.make_sortish_sampler(batch_size, distributed=self.hparams.gpus > 1)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=dataset.collate_fn,
                shuffle=False,
                num_workers=self.num_workers,
                sampler=sampler,
            )

        elif self.hparams.max_tokens_per_batch is not None and type_path != "test":
            batch_sampler = dataset.make_dynamic_sampler(
                self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1
            )
            return DataLoader(
                dataset,
                batch_sampler=batch_sampler,
                collate_fn=dataset.collate_fn,
                # shuffle=False,
                num_workers=self.num_workers,
                # batch_size=None,
            )
        else:
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=dataset.collate_fn,
                shuffle=shuffle,
                num_workers=self.num_workers,
                sampler=None,
            )
277
278

    def train_dataloader(self) -> DataLoader:
279
        dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
280
281
        return dataloader

282
283
    def val_dataloader(self) -> DataLoader:
        return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
284

285
286
    def test_dataloader(self) -> DataLoader:
        return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)
287
288
289
290

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        BaseTransformer.add_model_specific_args(parser, root_dir)
291
        add_generic_args(parser, root_dir)
292
        parser.add_argument(
293
            "--max_source_length",
294
295
296
297
298
            default=1024,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
299
300
301
302
303
304
305
        parser.add_argument(
            "--max_target_length",
            default=56,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        parser.add_argument(
            "--val_max_target_length",
            default=142,  # these defaults are optimized for CNNDM. For xsum, see README.md.
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--test_max_target_length",
            default=142,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument("--freeze_encoder", action="store_true")
        parser.add_argument("--freeze_embeds", action="store_true")
        parser.add_argument("--sortish_sampler", action="store_true", default=False)
323
        parser.add_argument("--max_tokens_per_batch", type=int, default=None)
324
        parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
325
326
327
        parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_val", type=int, default=500, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
328
329
330
        parser.add_argument(
            "--task", type=str, default="summarization", required=False, help="# examples. -1 means use all."
        )
331
        parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
332
333
        parser.add_argument("--src_lang", type=str, default="", required=False)
        parser.add_argument("--tgt_lang", type=str, default="", required=False)
334
        parser.add_argument("--eval_beams", type=int, default=None, required=False)
335
336
337
        parser.add_argument(
            "--val_metric", type=str, default=None, required=False, choices=["bleu", "rouge2", "loss", None]
        )
338
        parser.add_argument("--eval_max_gen_length", type=int, default=None, help="never generate more than n tokens")
339
        parser.add_argument("--save_top_k", type=int, default=1, required=False, help="How many checkpoints to save")
340
341
342
343
344
345
346
        parser.add_argument(
            "--early_stopping_patience",
            type=int,
            default=-1,
            required=False,
            help="-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So val_check_interval will effect it.",
        )
347
348
349
        return parser


350
351
352
353
class TranslationModule(SummarizationModule):
    mode = "translation"
    loss_names = ["loss"]
    metric_names = ["bleu"]
354
    default_val_metric = "bleu"
355

356
357
358
359
360
    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang

361
    def calc_generative_metrics(self, preds, target) -> dict:
362
        return calculate_bleu(preds, target)
363
364


365
366
367
368
369
def main(args, model=None) -> SummarizationModule:
    Path(args.output_dir).mkdir(exist_ok=True)
    if len(os.listdir(args.output_dir)) > 3 and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if model is None:
370
        if "summarization" in args.task:
371
372
373
            model: SummarizationModule = SummarizationModule(args)
        else:
            model: SummarizationModule = TranslationModule(args)
374
    dataset = Path(args.data_dir).name
375
    if (
376
        args.logger_name == "default"
377
378
379
380
381
        or args.fast_dev_run
        or str(args.output_dir).startswith("/tmp")
        or str(args.output_dir).startswith("/var")
    ):
        logger = True  # don't pollute wandb logs unnecessarily
382
    elif args.logger_name == "wandb":
383
384
        from pytorch_lightning.loggers import WandbLogger

385
386
        project = os.environ.get("WANDB_PROJECT", dataset)
        logger = WandbLogger(name=model.output_dir.name, project=project)
387

388
    elif args.logger_name == "wandb_shared":
389
390
        from pytorch_lightning.loggers import WandbLogger

391
        logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
392
393
394
395
396

    if args.early_stopping_patience >= 0:
        es_callback = get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
    else:
        es_callback = False
397
398

    lower_is_better = args.val_metric == "loss"
399
400
401
402
    trainer: pl.Trainer = generic_train(
        model,
        args,
        logging_callback=Seq2SeqLoggingCallback(),
403
404
405
        checkpoint_callback=get_checkpoint_callback(
            args.output_dir, model.val_metric, args.save_top_k, lower_is_better
        ),
406
        early_stopping_callback=es_callback,
407
408
        logger=logger,
    )
409
    pickle_save(model.hparams, model.output_dir / "hparams.pkl")
410
411
412
413
414
415
416
417
418
    if not args.do_predict:
        return model

    model.hparams.test_checkpoint = ""
    checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt"), recursive=True)))
    if checkpoints:
        model.hparams.test_checkpoint = checkpoints[-1]
        trainer.resume_from_checkpoint = checkpoints[-1]
    trainer.logger.log_hyperparams(model.hparams)
419
420
421

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
422
    return model
423
424
425
426


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
427
    parser = pl.Trainer.add_argparse_args(parser)
428
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
429

430
431
432
    args = parser.parse_args()

    main(args)