"vscode:/vscode.git/clone" did not exist on "264867bf87c37abdf794c9e1bab1bc512c2f5ff4"
modeling_gpt2.py 33.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
import logging
import math
import os

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss

28
29
from .configuration_gpt2 import GPT2Config
from .file_utils import add_start_docstrings
Aymeric Augustin's avatar
Aymeric Augustin committed
30
31
from .modeling_utils import Conv1D, PreTrainedModel, SequenceSummary, prune_conv1d_layer

thomwolf's avatar
thomwolf committed
32
33
34

logger = logging.getLogger(__name__)

35
36
37
38
39
40
41
42
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {
    "gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
    "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin",
    "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-pytorch_model.bin",
    "gpt2-xl": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-xl-pytorch_model.bin",
    "distilgpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/distilgpt2-pytorch_model.bin",
}

thomwolf's avatar
thomwolf committed
43

44
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
thomwolf's avatar
thomwolf committed
45
46
47
48
49
50
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import tensorflow as tf
    except ImportError:
51
52
53
54
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
thomwolf's avatar
thomwolf committed
55
56
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
thomwolf's avatar
thomwolf committed
57
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
thomwolf's avatar
thomwolf committed
58
59
60
61
62
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
63
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
64
65
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
66
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
67
68

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
69
        name = name[6:]  # skip "model/"
70
        name = name.split("/")
thomwolf's avatar
thomwolf committed
71
72
        pointer = model
        for m_name in name:
73
            if re.fullmatch(r"[A-Za-z]+\d+", m_name):
74
                scope_names = re.split(r"(\d+)", m_name)
thomwolf's avatar
thomwolf committed
75
            else:
76
77
                scope_names = [m_name]
            if scope_names[0] == "w" or scope_names[0] == "g":
78
                pointer = getattr(pointer, "weight")
79
            elif scope_names[0] == "b":
80
                pointer = getattr(pointer, "bias")
81
82
            elif scope_names[0] == "wpe" or scope_names[0] == "wte":
                pointer = getattr(pointer, scope_names[0])
83
                pointer = getattr(pointer, "weight")
thomwolf's avatar
thomwolf committed
84
            else:
85
86
87
                pointer = getattr(pointer, scope_names[0])
            if len(scope_names) >= 2:
                num = int(scope_names[1])
thomwolf's avatar
thomwolf committed
88
89
90
91
92
93
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
94
        logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
95
96
97
98
99
100
101
102
103
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
104
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
105
        super(Attention, self).__init__()
thomwolf's avatar
thomwolf committed
106
107
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
108
109
110
111
112
113
114
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
115

thomwolf's avatar
thomwolf committed
116
117
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
118
119
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
120
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
121

122
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
123
124
        if len(heads) == 0:
            return
125
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
126
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
127
        for head in heads:
128
129
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
130
131
132
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
133
        index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
134

135
136
137
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
138

139
140
141
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)
142
        self.pruned_heads = self.pruned_heads.union(heads)
143

144
    def _attn(self, q, k, v, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
145
146
147
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
148
        nd, ns = w.size(-2), w.size(-1)
149
        b = self.bias[:, :, ns - nd : ns, :ns]
150
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
151

152
153
154
155
        if attention_mask is not None:
            # Apply the attention mask
            w = w + attention_mask

thomwolf's avatar
thomwolf committed
156
        w = nn.Softmax(dim=-1)(w)
157
        w = self.attn_dropout(w)
158
159
160
161
162

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
163
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
164
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
165
166
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
167
168
169
170
171
172
173
174
175
176

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
177
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
178
        else:
thomwolf's avatar
thomwolf committed
179
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
180

181
    def forward(self, x, layer_past=None, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
182
183
184
185
186
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
187
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
188
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
189
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
190
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
191
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
192

193
        attn_outputs = self._attn(query, key, value, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
194
        a = attn_outputs[0]
195

thomwolf's avatar
thomwolf committed
196
197
        a = self.merge_heads(a)
        a = self.c_proj(a)
198
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
199
200
201

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)
thomwolf's avatar
thomwolf committed
202
203
204
205
206
207
208
209
210


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
211
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
212
213
214
215

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
216
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
217
218
219


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
220
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
221
222
        super(Block, self).__init__()
        nx = config.n_embd
223
        self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
224
        self.attn = Attention(nx, n_ctx, config, scale)
225
        self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
226
227
        self.mlp = MLP(4 * nx, config)

228
    def forward(self, x, layer_past=None, attention_mask=None, head_mask=None):
229
230
231
        output_attn = self.attn(
            self.ln_1(x), layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask
        )
thomwolf's avatar
thomwolf committed
232
233
        a = output_attn[0]  # output_attn: a, present, (attentions)

thomwolf's avatar
thomwolf committed
234
        x = x + a
thomwolf's avatar
thomwolf committed
235
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
236
        x = x + m
thomwolf's avatar
thomwolf committed
237
238
239

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)
thomwolf's avatar
thomwolf committed
240
241


242
class GPT2PreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
243
244
245
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
246

247
    config_class = GPT2Config
248
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
249
250
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"
thomwolf's avatar
thomwolf committed
251

252
253
254
    def __init__(self, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)

255
    def _init_weights(self, module):
thomwolf's avatar
thomwolf committed
256
257
        """ Initialize the weights.
        """
258
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
259
260
261
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
262
263
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
264
        elif isinstance(module, nn.LayerNorm):
thomwolf's avatar
thomwolf committed
265
266
267
268
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


thomwolf's avatar
thomwolf committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
GPT2_START_DOCSTRING = r"""    OpenAI GPT-2 model was proposed in
    `Language Models are Unsupervised Multitask Learners`_
    by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
    It's a causal (unidirectional) transformer pre-trained using  language modeling on a very large
    corpus of ~40 GB of text data.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Language Models are Unsupervised Multitask Learners`:
        https://openai.com/blog/better-language-models/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
285
        config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.
286
            Initializing with a config file does not load the weights associated with the model, only the configuration.
287
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
288
289
"""

thomwolf's avatar
thomwolf committed
290
GPT2_INPUTS_DOCSTRING = r"""    Inputs:
thomwolf's avatar
thomwolf committed
291
292
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
293
294
            GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
295
296
297
            Indices can be obtained using :class:`transformers.GPT2Tokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
thomwolf's avatar
thomwolf committed
298
299
300
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
301
            (see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model
302
            should not be passed as input ids as they have already been computed.
303
304
305
306
307
308
309
310
311
312
313
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
314
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
315
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
316
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
317
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
Julien Chaumond's avatar
Julien Chaumond committed
318
319
        **inputs_embeds**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
            Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
320
321
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
thomwolf's avatar
thomwolf committed
322
323
"""

324
325
326
327
328
329

@add_start_docstrings(
    "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
    GPT2_START_DOCSTRING,
    GPT2_INPUTS_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
330
class GPT2Model(GPT2PreTrainedModel):
331
    r"""
thomwolf's avatar
thomwolf committed
332
333
334
335
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **past**:
336
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
thomwolf's avatar
thomwolf committed
337
            that contains pre-computed hidden-states (key and values in the attention blocks).
338
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
339
            should not be passed as input ids as they have already been computed.
thomwolf's avatar
thomwolf committed
340
341
342
343
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
344
345
346
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
347
348
349

    Examples::

350
351
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2Model.from_pretrained('gpt2')
352
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
353
354
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
355
356

    """
357

thomwolf's avatar
thomwolf committed
358
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
359
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
360
361
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions
362
        self.output_past = config.output_past
thomwolf's avatar
thomwolf committed
363

thomwolf's avatar
thomwolf committed
364
        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
thomwolf's avatar
thomwolf committed
365
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
366
        self.drop = nn.Dropout(config.embd_pdrop)
367
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
368
        self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
369

370
        self.init_weights()
thomwolf's avatar
thomwolf committed
371

thomwolf's avatar
thomwolf committed
372
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
373
        return self.wte
thomwolf's avatar
thomwolf committed
374

thomwolf's avatar
thomwolf committed
375
    def set_input_embeddings(self, new_embeddings):
376
377
        self.wte = new_embeddings

thomwolf's avatar
thomwolf committed
378
    def _prune_heads(self, heads_to_prune):
379
380
381
382
383
384
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

385
386
387
388
389
390
391
392
393
394
    def forward(
        self,
        input_ids=None,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
    ):
Julien Chaumond's avatar
Julien Chaumond committed
395
396
397
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
398
399
400
401
402
403
404
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

405
406
407
408
409
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

thomwolf's avatar
thomwolf committed
410
        if past is None:
thomwolf's avatar
thomwolf committed
411
            past_length = 0
thomwolf's avatar
thomwolf committed
412
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
413
        else:
thomwolf's avatar
thomwolf committed
414
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
415
        if position_ids is None:
416
417
418
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
thomwolf's avatar
thomwolf committed
419

420
421
        # Attention mask.
        if attention_mask is not None:
422
            attention_mask = attention_mask.view(-1, input_shape[-1])
423
424
425
426
427
428
429
430
431
432
433
434
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
435
            attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
436
437
            attention_mask = (1.0 - attention_mask) * -10000.0

438
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
439
        # 1.0 in head_mask indicate we keep the head
440
        # attention_probs has shape bsz x n_heads x N x N
441
        # head_mask has shape n_layer x batch x n_heads x N x N
442
443
        if head_mask is not None:
            if head_mask.dim() == 1:
444
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
445
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
446
            elif head_mask.dim() == 2:
447
448
449
450
451
452
                head_mask = (
                    head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
                )  # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )  # switch to fload if need + fp16 compatibility
453
454
        else:
            head_mask = [None] * self.config.n_layer
455

456
457
        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
thomwolf's avatar
thomwolf committed
458
459
460
461
462
463
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
464
465
        hidden_states = self.drop(hidden_states)

466
467
        output_shape = input_shape + (hidden_states.size(-1),)

468
        presents = ()
thomwolf's avatar
thomwolf committed
469
        all_attentions = []
470
        all_hidden_states = ()
471
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
thomwolf's avatar
thomwolf committed
472
            if self.output_hidden_states:
473
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
474

475
476
477
            outputs = block(
                hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i]
            )
478

thomwolf's avatar
thomwolf committed
479
            hidden_states, present = outputs[:2]
480
481
            if self.output_past:
                presents = presents + (present,)
thomwolf's avatar
thomwolf committed
482
483
484
485

            if self.output_attentions:
                all_attentions.append(outputs[2])

thomwolf's avatar
thomwolf committed
486
        hidden_states = self.ln_f(hidden_states)
487

thomwolf's avatar
thomwolf committed
488
489
490
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
491
            all_hidden_states = all_hidden_states + (hidden_states,)
thomwolf's avatar
thomwolf committed
492

493
494
495
        outputs = (hidden_states,)
        if self.output_past:
            outputs = outputs + (presents,)
thomwolf's avatar
thomwolf committed
496
        if self.output_hidden_states:
497
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
498
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
499
500
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
501
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
502
            outputs = outputs + (all_attentions,)
503
        return outputs  # last hidden state, (presents), (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
504
505


506
507
508
509
510
511
@add_start_docstrings(
    """The GPT2 Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """,
    GPT2_START_DOCSTRING,
    GPT2_INPUTS_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
512
class GPT2LMHeadModel(GPT2PreTrainedModel):
513
    r"""
thomwolf's avatar
thomwolf committed
514
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
515
516
517
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
LysandreJik's avatar
LysandreJik committed
518
            All labels set to ``-100`` are ignored (masked), the loss is only
thomwolf's avatar
thomwolf committed
519
520
521
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
522
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
thomwolf's avatar
thomwolf committed
523
524
525
526
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **past**:
527
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
thomwolf's avatar
thomwolf committed
528
            that contains pre-computed hidden-states (key and values in the attention blocks).
529
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
530
            should not be passed as input ids as they have already been computed.
thomwolf's avatar
thomwolf committed
531
532
533
534
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
535
536
537
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
538
539
540

    Examples::

thomwolf's avatar
thomwolf committed
541
        import torch
542
        from transformers import GPT2Tokenizer, GPT2LMHeadModel
thomwolf's avatar
thomwolf committed
543

544
545
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2LMHeadModel.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
546

547
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
548
549
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]
thomwolf's avatar
thomwolf committed
550
551

    """
552

thomwolf's avatar
thomwolf committed
553
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
554
        super(GPT2LMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
555
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
556
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
557

558
        self.init_weights()
559

thomwolf's avatar
thomwolf committed
560
    def get_output_embeddings(self):
561
        return self.lm_head
thomwolf's avatar
thomwolf committed
562

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    def forward(
        self,
        input_ids=None,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
        transformer_outputs = self.transformer(
            input_ids,
            past=past,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
thomwolf's avatar
thomwolf committed
583
        hidden_states = transformer_outputs[0]
584

thomwolf's avatar
thomwolf committed
585
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
586

587
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
588
        if labels is not None:
589
            # Shift so that tokens < n predict n
590
            shift_logits = lm_logits[..., :-1, :].contiguous()
thomwolf's avatar
thomwolf committed
591
            shift_labels = labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
592
            # Flatten the tokens
LysandreJik's avatar
LysandreJik committed
593
            loss_fct = CrossEntropyLoss()
594
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
595
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
596
597

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
598
599


600
601
@add_start_docstrings(
    """The GPT2 Model transformer with a language modeling and a multiple-choice classification
thomwolf's avatar
thomwolf committed
602
603
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
Julien Chaumond's avatar
Julien Chaumond committed
604
the classification head takes as input the input of a specified classification token index in the input sequence).
605
606
607
608
""",
    GPT2_START_DOCSTRING,
    GPT2_INPUTS_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
609
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
610
    r"""
thomwolf's avatar
thomwolf committed
611
        **mc_token_ids**: (`optional`, default to index of the last token of the input) ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
thomwolf's avatar
thomwolf committed
612
613
614
615
616
617
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
LysandreJik's avatar
LysandreJik committed
618
            All labels set to ``-100`` are ignored (masked), the loss is only
thomwolf's avatar
thomwolf committed
619
            computed for labels in ``[0, ..., config.vocab_size]``
620
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
thomwolf's avatar
thomwolf committed
621
622
623
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
thomwolf's avatar
thomwolf committed
624

thomwolf's avatar
thomwolf committed
625
626
627
628
629
630
631
632
633
634
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **past**:
635
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
thomwolf's avatar
thomwolf committed
636
            that contains pre-computed hidden-states (key and values in the attention blocks).
637
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
638
            should not be passed as input ids as they have already been computed.
thomwolf's avatar
thomwolf committed
639
640
641
642
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
643
644
645
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
646
647
648

    Examples::

649
        import torch
650
        from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
651

652
653
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
654

thomwolf's avatar
thomwolf committed
655
656
657
658
        # Add a [CLS] to the vocabulary (we should train it also!)
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size
        print(tokenizer.cls_token_id, len(tokenizer))  # The newly token the last token of the vocabulary
659

thomwolf's avatar
thomwolf committed
660
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
thomwolf's avatar
thomwolf committed
661
662
663
664
665
666
667
        encoded_choices = [tokenizer.encode(s) for s in choices]
        cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

        input_ids = torch.tensor(encoded_choices).unsqueeze(0)  # Batch size: 1, number of choices: 2
        mc_token_ids = torch.tensor([cls_token_location])  # Batch size: 1

        outputs = model(input_ids, mc_token_ids=mc_token_ids)
668
        lm_prediction_scores, mc_prediction_scores = outputs[:2]
thomwolf's avatar
thomwolf committed
669
670

    """
671

thomwolf's avatar
thomwolf committed
672
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
673
        super(GPT2DoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
674
        config.num_labels = 1
thomwolf's avatar
thomwolf committed
675
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
676
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
677
        self.multiple_choice_head = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
678

679
        self.init_weights()
thomwolf's avatar
thomwolf committed
680

thomwolf's avatar
thomwolf committed
681
    def get_output_embeddings(self):
682
        return self.lm_head
thomwolf's avatar
thomwolf committed
683

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    def forward(
        self,
        input_ids=None,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        mc_token_ids=None,
        lm_labels=None,
        mc_labels=None,
    ):
        transformer_outputs = self.transformer(
            input_ids,
            past=past,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
706

thomwolf's avatar
thomwolf committed
707
        hidden_states = transformer_outputs[0]
708

thomwolf's avatar
thomwolf committed
709
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
710
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
711

712
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
713
714
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
715
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
716
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
717
        if lm_labels is not None:
718
719
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
LysandreJik's avatar
LysandreJik committed
720
            loss_fct = CrossEntropyLoss()
721
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
722
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
723
724

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)