run_ner.py 26.1 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27

28
import datasets
29
import evaluate
30
import numpy as np
31
from datasets import ClassLabel, load_dataset
Aymeric Augustin's avatar
Aymeric Augustin committed
32

33
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
34
from transformers import (
35
36
37
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
38
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
39
    HfArgumentParser,
40
    PretrainedConfig,
41
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
42
43
44
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
45
)
46
from transformers.trainer_utils import get_last_checkpoint
47
from transformers.utils import check_min_version, send_example_telemetry
48
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
49
50


51
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
52
check_min_version("4.28.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
53

54
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
55

56
57
58
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
59
60
61
62
63
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
64

Julien Chaumond's avatar
Julien Chaumond committed
65
66
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
67
    )
Julien Chaumond's avatar
Julien Chaumond committed
68
69
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
70
    )
Julien Chaumond's avatar
Julien Chaumond committed
71
72
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
73
    )
Julien Chaumond's avatar
Julien Chaumond committed
74
    cache_dir: Optional[str] = field(
75
76
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
77
    )
78
79
80
81
82
83
84
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
85
            "help": (
86
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
                "with private models)."
            )
89
90
        },
    )
91
92
93
94
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
95
96


Julien Chaumond's avatar
Julien Chaumond committed
97
98
99
100
101
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
102

103
104
105
106
107
108
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
109
    )
110
111
112
113
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
114
        default=None,
115
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
116
    )
117
118
119
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
120
    )
121
122
123
124
125
126
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
127
128
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
129
    )
130
131
132
133
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
134
135
136
    max_seq_length: int = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
137
138
139
140
            "help": (
                "The maximum total input sequence length after tokenization. If set, sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
141
142
        },
    )
143
144
145
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
149
150
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
151
152
        },
    )
153
154
155
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
156
157
158
159
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
160
161
        },
    )
162
    max_eval_samples: Optional[int] = field(
163
164
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
165
166
167
168
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
169
170
        },
    )
171
    max_predict_samples: Optional[int] = field(
172
173
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
174
175
176
177
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
178
179
        },
    )
180
181
182
    label_all_tokens: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
183
184
185
186
            "help": (
                "Whether to put the label for one word on all tokens of generated by that word or just on the "
                "one (in which case the other tokens will have a padding index)."
            )
187
188
        },
    )
189
190
191
192
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
193
194
195
196
197
198
199
200
201
202
203
204

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
205

Julien Chaumond's avatar
Julien Chaumond committed
206
207
208
209
210
211
212

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
213
214
215
216
217
218
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
219

220
221
222
223
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner", model_args, data_args)

224
    # Setup logging
225
    logging.basicConfig(
226
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
227
        datefmt="%m/%d/%Y %H:%M:%S",
228
        handlers=[logging.StreamHandler(sys.stdout)],
229
    )
230

231
232
233
234
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

235
236
237
238
239
240
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
241
242

    # Log on each process the small summary:
243
    logger.warning(
244
245
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
246
    )
247
    logger.info(f"Training/evaluation parameters {training_args}")
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

264
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
265
    set_seed(training_args.seed)
266

267
268
269
270
271
272
273
274
275
276
277
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
278
        raw_datasets = load_dataset(
279
280
281
282
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
283
        )
284
285
286
287
288
289
290
291
292
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
293
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
294
295
296
297
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
298
299
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
300
    else:
301
302
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
303
304
305
306
307
308
309
310
311
312
313
314
315
316

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
317

Sylvain Gugger's avatar
Sylvain Gugger committed
318
319
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
320
321
322
323
324
325
326
327
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

328
329
330
331
    # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
    # Otherwise, we have to get the list of labels manually.
    labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)
    if labels_are_int:
Sylvain Gugger's avatar
Sylvain Gugger committed
332
        label_list = features[label_column_name].feature.names
333
        label_to_id = {i: i for i in range(len(label_list))}
Sylvain Gugger's avatar
Sylvain Gugger committed
334
    else:
335
        label_list = get_label_list(raw_datasets["train"][label_column_name])
336
        label_to_id = {l: i for i, l in enumerate(label_list)}
337

338
    num_labels = len(label_list)
339

340
    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
341
342
343
344
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
345
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
346
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
347
        num_labels=num_labels,
348
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
349
        cache_dir=model_args.cache_dir,
350
351
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
352
    )
353
354

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
355
    if config.model_type in {"bloom", "gpt2", "roberta"}:
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

373
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
374
375
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
376
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
377
        cache_dir=model_args.cache_dir,
378
379
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
380
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
381
    )
382

383
384
385
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
386
387
388
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
389
390
        )

391
    # Model has labels -> use them.
392
    if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
393
        if sorted(model.config.label2id.keys()) == sorted(label_list):
394
395
396
397
398
399
400
            # Reorganize `label_list` to match the ordering of the model.
            if labels_are_int:
                label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)}
                label_list = [model.config.id2label[i] for i in range(num_labels)]
            else:
                label_list = [model.config.id2label[i] for i in range(num_labels)]
                label_to_id = {l: i for i, l in enumerate(label_list)}
401
402
403
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
404
405
                f"model labels: {sorted(model.config.label2id.keys())}, dataset labels:"
                f" {sorted(label_list)}.\nIgnoring the model labels as a result.",
406
407
            )

408
409
    # Set the correspondences label/ID inside the model config
    model.config.label2id = {l: i for i, l in enumerate(label_list)}
Sylvain's avatar
Sylvain committed
410
    model.config.id2label = dict(enumerate(label_list))
411
412
413
414
415
416
417
418
419

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

420
421
422
423
424
425
426
427
428
429
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
430
            max_length=data_args.max_seq_length,
431
432
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
433
        )
434
        labels = []
435
436
437
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
438
            label_ids = []
439
440
441
442
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
443
                    label_ids.append(-100)
444
445
446
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
447
448
449
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
450
451
452
453
                    if data_args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
454
                previous_word_idx = word_idx
455
456
457
458
459

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

460
    if training_args.do_train:
461
        if "train" not in raw_datasets:
462
            raise ValueError("--do_train requires a train dataset")
463
        train_dataset = raw_datasets["train"]
464
        if data_args.max_train_samples is not None:
465
466
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
467
468
469
470
471
472
473
474
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
475
476

    if training_args.do_eval:
477
        if "validation" not in raw_datasets:
478
            raise ValueError("--do_eval requires a validation dataset")
479
        eval_dataset = raw_datasets["validation"]
480
        if data_args.max_eval_samples is not None:
481
482
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
483
484
485
486
487
488
489
490
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
491
492

    if training_args.do_predict:
493
        if "test" not in raw_datasets:
494
            raise ValueError("--do_predict requires a test dataset")
495
        predict_dataset = raw_datasets["test"]
496
        if data_args.max_predict_samples is not None:
497
498
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
499
500
501
502
503
504
505
506
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
507

508
    # Data collator
509
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
510

511
    # Metrics
512
    metric = evaluate.load("seqeval")
513

514
515
516
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
517

518
519
520
521
522
523
524
525
526
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
527

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
546
547
548
549
550

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
551
552
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
553
554
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
555
556
        compute_metrics=compute_metrics,
    )
557
558

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
559
    if training_args.do_train:
560
561
562
563
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
564
565
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
566
        metrics = train_result.metrics
567
        trainer.save_model()  # Saves the tokenizer too for easy upload
568

569
570
571
572
573
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

574
575
576
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
577

578
    # Evaluation
579
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
580
581
        logger.info("*** Evaluate ***")

582
583
        metrics = trainer.evaluate()

584
585
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
586

587
588
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
589
590

    # Predict
591
    if training_args.do_predict:
592
593
        logger.info("*** Predict ***")

594
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
595
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
596

597
598
599
600
601
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
602

603
604
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
605

606
        # Save predictions
607
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
608
        if trainer.is_world_process_zero():
609
            with open(output_predictions_file, "w") as writer:
610
611
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
612

613
614
615
616
617
618
619
620
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
621

622
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
623
        trainer.push_to_hub(**kwargs)
624
625
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
626

627

628
629
630
631
632
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


633
634
if __name__ == "__main__":
    main()