test_modeling_ctrl.py 8.16 KB
Newer Older
keskarnitish's avatar
keskarnitish committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
14

keskarnitish's avatar
keskarnitish committed
15

16
17
import unittest

keskarnitish's avatar
keskarnitish committed
18
from transformers import is_torch_available
19
from transformers.testing_utils import require_torch, slow, torch_device
keskarnitish's avatar
keskarnitish committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_generation_utils import GenerationTesterMixin
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
keskarnitish's avatar
keskarnitish committed
24
25


Aymeric Augustin's avatar
Aymeric Augustin committed
26
if is_torch_available():
27
    import torch
28

29
30
31
32
33
34
35
    from transformers import (
        CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
        CTRLConfig,
        CTRLForSequenceClassification,
        CTRLLMHeadModel,
        CTRLModel,
    )
Aymeric Augustin's avatar
Aymeric Augustin committed
36
37


38
39
class CTRLModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
40
41
        self,
        parent,
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
66
        self.pad_token_id = self.vocab_size - 1
67
68
69
70
71
72

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
73
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
Sylvain Gugger's avatar
Sylvain Gugger committed
101
            n_ctx=self.max_position_embeddings,
102
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
103
            # initializer_range=self.initializer_range,
104
            pad_token_id=self.pad_token_id,
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLModel(config=config)
        model.to(torch_device)
        model.eval()

        model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        model(input_ids, token_type_ids=token_type_ids)
Sylvain Gugger's avatar
Sylvain Gugger committed
128
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
129
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
130
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
131
132
133
134
135
136

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
137
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
138
139
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}

        return config, inputs_dict

160
161
162
163
164
165
166
167
168
    def create_and_check_ctrl_for_sequence_classification(self, config, input_ids, head_mask, token_type_ids, *args):
        config.num_labels = self.num_labels
        model = CTRLForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

169

170
@require_torch
171
class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
keskarnitish's avatar
keskarnitish committed
172

173
    all_model_classes = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
174
    all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else ()
175
    test_pruning = True
keskarnitish's avatar
keskarnitish committed
176
177
178
179
180
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
181
        self.model_tester = CTRLModelTester(self)
keskarnitish's avatar
keskarnitish committed
182
183
184
185
186
187
188
189
190
191
192
193
194
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

195
    @slow
keskarnitish's avatar
keskarnitish committed
196
    def test_model_from_pretrained(self):
197
        for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
198
            model = CTRLModel.from_pretrained(model_name)
keskarnitish's avatar
keskarnitish committed
199
            self.assertIsNotNone(model)
200
201


202
@require_torch
203
204
205
206
class CTRLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_ctrl(self):
        model = CTRLLMHeadModel.from_pretrained("ctrl")
207
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
208
        input_ids = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
209
210
            [[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device
        )  # Legal the president is
211
212
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
213
214
            0,
            1611,
215
            8,
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218
            5,
            150,
            26449,
219
            2,
Patrick von Platen's avatar
Patrick von Platen committed
220
221
222
            19,
            348,
            469,
223
            3,
Patrick von Platen's avatar
Patrick von Platen committed
224
225
226
227
228
229
230
231
232
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
233

patrickvonplaten's avatar
patrickvonplaten committed
234
        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
235
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)