test_modeling_ctrl.py 8.18 KB
Newer Older
keskarnitish's avatar
keskarnitish committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
14
from __future__ import absolute_import, division, print_function
keskarnitish's avatar
keskarnitish committed
15
16
17

from transformers import is_torch_available

18
19
from .test_configuration_common import ConfigTester
from .test_modeling_common import CommonTestCases, ids_tensor
20
from .utils import CACHE_DIR, require_torch, slow, torch_device
keskarnitish's avatar
keskarnitish committed
21
22


Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
25
26
if is_torch_available():
    from transformers import CTRLConfig, CTRLModel, CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, CTRLLMHeadModel


27
@require_torch
keskarnitish's avatar
keskarnitish committed
28
29
30
31
32
33
34
35
36
class CTRLModelTest(CommonTestCases.CommonModelTester):

    all_model_classes = (CTRLModel, CTRLLMHeadModel) if is_torch_available() else ()
    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    class CTRLModelTester(object):
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_token_type_ids=True,
            use_input_mask=True,
            use_labels=True,
            use_mc_token_ids=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
keskarnitish's avatar
keskarnitish committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_token_type_ids = use_token_type_ids
            self.use_input_mask = use_input_mask
            self.use_labels = use_labels
            self.use_mc_token_ids = use_mc_token_ids
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            mc_token_ids = None
            if self.use_mc_token_ids:
                mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = CTRLConfig(
thomwolf's avatar
thomwolf committed
111
                vocab_size=self.vocab_size,
keskarnitish's avatar
keskarnitish committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                # intermediate_size=self.intermediate_size,
                # hidden_act=self.hidden_act,
                # hidden_dropout_prob=self.hidden_dropout_prob,
                # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                n_positions=self.max_position_embeddings,
                n_ctx=self.max_position_embeddings
                # type_vocab_size=self.type_vocab_size,
                # initializer_range=self.initializer_range
            )

            head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

127
128
129
130
131
132
133
134
135
136
137
            return (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            )
keskarnitish's avatar
keskarnitish committed
138
139

        def check_loss_output(self, result):
140
            self.parent.assertListEqual(list(result["loss"].size()), [])
keskarnitish's avatar
keskarnitish committed
141
142
143

        def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = CTRLModel(config=config)
144
            model.to(torch_device)
keskarnitish's avatar
keskarnitish committed
145
146
147
148
            model.eval()

            model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
            model(input_ids, token_type_ids=token_type_ids)
thomwolf's avatar
thomwolf committed
149
            sequence_output, presents = model(input_ids)
keskarnitish's avatar
keskarnitish committed
150
151
152

            result = {
                "sequence_output": sequence_output,
thomwolf's avatar
thomwolf committed
153
                "presents": presents,
keskarnitish's avatar
keskarnitish committed
154
155
            }
            self.parent.assertListEqual(
156
157
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
158
            self.parent.assertEqual(len(result["presents"]), config.n_layer)
keskarnitish's avatar
keskarnitish committed
159
160
161

        def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = CTRLLMHeadModel(config)
162
            model.to(torch_device)
keskarnitish's avatar
keskarnitish committed
163
164
165
166
            model.eval()

            loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)

167
168
            result = {"loss": loss, "lm_logits": lm_logits}
            self.parent.assertListEqual(list(result["loss"].size()), [])
keskarnitish's avatar
keskarnitish committed
169
            self.parent.assertListEqual(
170
171
                list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
keskarnitish's avatar
keskarnitish committed
172
173
174
175

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()

176
177
178
179
180
181
182
183
184
185
186
187
188
            (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs

            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}
keskarnitish's avatar
keskarnitish committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

            return config, inputs_dict

    def setUp(self):
        self.model_tester = CTRLModelTest.CTRLModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

207
    @slow
keskarnitish's avatar
keskarnitish committed
208
209
    def test_model_from_pretrained(self):
        for model_name in list(CTRL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
210
            model = CTRLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
keskarnitish's avatar
keskarnitish committed
211
            self.assertIsNotNone(model)