test_modeling_ctrl.py 7.7 KB
Newer Older
keskarnitish's avatar
keskarnitish committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
14

keskarnitish's avatar
keskarnitish committed
15

16
17
import unittest

keskarnitish's avatar
keskarnitish committed
18
19
from transformers import is_torch_available

20
from .test_configuration_common import ConfigTester
21
from .test_modeling_common import ModelTesterMixin, ids_tensor
22
from .utils import require_torch, slow, torch_device
keskarnitish's avatar
keskarnitish committed
23
24


Aymeric Augustin's avatar
Aymeric Augustin committed
25
if is_torch_available():
26
    import torch
27
    from transformers import CTRLConfig, CTRLModel, CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLLMHeadModel
Aymeric Augustin's avatar
Aymeric Augustin committed
28
29


30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
class CTRLModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            n_ctx=self.max_position_embeddings
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])

    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLModel(config=config)
        model.to(torch_device)
        model.eval()

        model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        model(input_ids, token_type_ids=token_type_ids)
        sequence_output, presents = model(input_ids)

        result = {
            "sequence_output": sequence_output,
            "presents": presents,
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
        )
        self.parent.assertEqual(len(result["presents"]), config.n_layer)

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLLMHeadModel(config)
        model.to(torch_device)
        model.eval()

        loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)

        result = {"loss": loss, "lm_logits": lm_logits}
        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(
            list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}

        return config, inputs_dict


164
@require_torch
165
class CTRLModelTest(ModelTesterMixin, unittest.TestCase):
keskarnitish's avatar
keskarnitish committed
166
167

    all_model_classes = (CTRLModel, CTRLLMHeadModel) if is_torch_available() else ()
168
    all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else ()
169
    test_pruning = True
keskarnitish's avatar
keskarnitish committed
170
171
172
173
174
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
175
        self.model_tester = CTRLModelTester(self)
keskarnitish's avatar
keskarnitish committed
176
177
178
179
180
181
182
183
184
185
186
187
188
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

189
    @slow
keskarnitish's avatar
keskarnitish committed
190
    def test_model_from_pretrained(self):
191
        for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
192
            model = CTRLModel.from_pretrained(model_name)
keskarnitish's avatar
keskarnitish committed
193
            self.assertIsNotNone(model)
194
195


196
@require_torch
197
198
199
200
class CTRLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_ctrl(self):
        model = CTRLLMHeadModel.from_pretrained("ctrl")
201
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
202
        input_ids = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
203
204
            [[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device
        )  # Legal the president is
205
206
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
207
208
            0,
            1611,
209
            8,
Patrick von Platen's avatar
Patrick von Platen committed
210
211
212
            5,
            150,
            26449,
213
            2,
Patrick von Platen's avatar
Patrick von Platen committed
214
215
216
            19,
            348,
            469,
217
            3,
Patrick von Platen's avatar
Patrick von Platen committed
218
219
220
221
222
223
224
225
226
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
227

patrickvonplaten's avatar
patrickvonplaten committed
228
        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
229
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)