test_modeling_ctrl.py 7.44 KB
Newer Older
keskarnitish's avatar
keskarnitish committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
14

keskarnitish's avatar
keskarnitish committed
15

16
17
import unittest

keskarnitish's avatar
keskarnitish committed
18
from transformers import is_torch_available
19
from transformers.testing_utils import require_torch, slow, torch_device
keskarnitish's avatar
keskarnitish committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_generation_utils import GenerationTesterMixin
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
keskarnitish's avatar
keskarnitish committed
24
25


Aymeric Augustin's avatar
Aymeric Augustin committed
26
if is_torch_available():
27
    import torch
28
29

    from transformers import CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLConfig, CTRLLMHeadModel, CTRLModel
Aymeric Augustin's avatar
Aymeric Augustin committed
30
31


32
33
class CTRLModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
34
35
        self,
        parent,
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
66
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
Sylvain Gugger's avatar
Sylvain Gugger committed
94
            n_ctx=self.max_position_embeddings,
95
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
96
            # initializer_range=self.initializer_range,
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLModel(config=config)
        model.to(torch_device)
        model.eval()

        model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        model(input_ids, token_type_ids=token_type_ids)
Sylvain Gugger's avatar
Sylvain Gugger committed
120
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
121
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
122
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
123
124
125
126
127
128

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
129
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
130
131
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}

        return config, inputs_dict


153
@require_torch
154
class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
keskarnitish's avatar
keskarnitish committed
155
156

    all_model_classes = (CTRLModel, CTRLLMHeadModel) if is_torch_available() else ()
157
    all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else ()
158
    test_pruning = True
keskarnitish's avatar
keskarnitish committed
159
160
161
162
163
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
164
        self.model_tester = CTRLModelTester(self)
keskarnitish's avatar
keskarnitish committed
165
166
167
168
169
170
171
172
173
174
175
176
177
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

178
    @slow
keskarnitish's avatar
keskarnitish committed
179
    def test_model_from_pretrained(self):
180
        for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
181
            model = CTRLModel.from_pretrained(model_name)
keskarnitish's avatar
keskarnitish committed
182
            self.assertIsNotNone(model)
183
184


185
@require_torch
186
187
188
189
class CTRLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_ctrl(self):
        model = CTRLLMHeadModel.from_pretrained("ctrl")
190
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
191
        input_ids = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
192
193
            [[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device
        )  # Legal the president is
194
195
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
196
197
            0,
            1611,
198
            8,
Patrick von Platen's avatar
Patrick von Platen committed
199
200
201
            5,
            150,
            26449,
202
            2,
Patrick von Platen's avatar
Patrick von Platen committed
203
204
205
            19,
            348,
            469,
206
            3,
Patrick von Platen's avatar
Patrick von Platen committed
207
208
209
210
211
212
213
214
215
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
216

patrickvonplaten's avatar
patrickvonplaten committed
217
        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
218
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)