test_modeling_distilbert.py 11.2 KB
Newer Older
LysandreJik's avatar
LysandreJik committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
LysandreJik's avatar
LysandreJik committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

LysandreJik's avatar
LysandreJik committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
28
    import torch

29
    from transformers import (
30
        DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
31
32
        DistilBertConfig,
        DistilBertForMaskedLM,
33
        DistilBertForMultipleChoice,
34
35
        DistilBertForQuestionAnswering,
        DistilBertForSequenceClassification,
36
37
        DistilBertForTokenClassification,
        DistilBertModel,
38
39
    )

thomwolf's avatar
thomwolf committed
40
    class DistilBertModelTester(object):
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=False,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
LysandreJik's avatar
LysandreJik committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
94
                input_mask = random_attention_mask([self.batch_size, self.seq_length])
LysandreJik's avatar
LysandreJik committed
95
96
97
98
99
100
101
102
103

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

thomwolf's avatar
thomwolf committed
104
            config = DistilBertConfig(
thomwolf's avatar
thomwolf committed
105
                vocab_size=self.vocab_size,
LysandreJik's avatar
LysandreJik committed
106
107
108
109
110
111
112
113
                dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                hidden_dim=self.intermediate_size,
                hidden_act=self.hidden_act,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
114
115
                initializer_range=self.initializer_range,
            )
LysandreJik's avatar
LysandreJik committed
116
117
118

            return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

119
120
121
        def create_and_check_distilbert_model(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
122
            model = DistilBertModel(config=config)
123
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
124
            model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
125
126
            result = model(input_ids, input_mask)
            result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
127
128
            self.parent.assertEqual(
                result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)
129
            )
LysandreJik's avatar
LysandreJik committed
130

131
132
133
        def create_and_check_distilbert_for_masked_lm(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
134
            model = DistilBertForMaskedLM(config=config)
135
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
136
            model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
137
            result = model(input_ids, attention_mask=input_mask, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
138
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
LysandreJik's avatar
LysandreJik committed
139

140
141
142
        def create_and_check_distilbert_for_question_answering(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
143
            model = DistilBertForQuestionAnswering(config=config)
144
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
145
            model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
146
            result = model(
147
148
                input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels
            )
Stas Bekman's avatar
Stas Bekman committed
149
150
            self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
            self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
LysandreJik's avatar
LysandreJik committed
151

152
153
154
        def create_and_check_distilbert_for_sequence_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
LysandreJik's avatar
LysandreJik committed
155
            config.num_labels = self.num_labels
thomwolf's avatar
thomwolf committed
156
            model = DistilBertForSequenceClassification(config)
157
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
158
            model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
159
            result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
160
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
LysandreJik's avatar
LysandreJik committed
161

162
163
164
        def create_and_check_distilbert_for_token_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
165
166
            config.num_labels = self.num_labels
            model = DistilBertForTokenClassification(config=config)
167
            model.to(torch_device)
168
169
            model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
170
            result = model(input_ids, attention_mask=input_mask, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
171
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
172

173
174
175
176
177
178
179
180
181
        def create_and_check_distilbert_for_multiple_choice(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_choices = self.num_choices
            model = DistilBertForMultipleChoice(config=config)
            model.to(torch_device)
            model.eval()
            multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
182
            result = model(
Lysandre's avatar
Lysandre committed
183
184
185
                multiple_choice_inputs_ids,
                attention_mask=multiple_choice_input_mask,
                labels=choice_labels,
186
            )
Stas Bekman's avatar
Stas Bekman committed
187
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
188

LysandreJik's avatar
LysandreJik committed
189
190
191
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
192
            inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
LysandreJik's avatar
LysandreJik committed
193
194
            return config, inputs_dict

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

@require_torch
class DistilBertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            DistilBertModel,
            DistilBertForMaskedLM,
            DistilBertForMultipleChoice,
            DistilBertForQuestionAnswering,
            DistilBertForSequenceClassification,
            DistilBertForTokenClassification,
        )
        if is_torch_available()
        else None
    )
    test_pruning = True
    test_torchscript = True
    test_resize_embeddings = True
214
    test_sequence_classification_problem_types = True
215

LysandreJik's avatar
LysandreJik committed
216
    def setUp(self):
217
        self.model_tester = DistilBertModelTester(self)
thomwolf's avatar
thomwolf committed
218
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)
LysandreJik's avatar
LysandreJik committed
219
220
221
222

    def test_config(self):
        self.config_tester.run_common_tests()

thomwolf's avatar
thomwolf committed
223
    def test_distilbert_model(self):
LysandreJik's avatar
LysandreJik committed
224
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
225
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
226
227
228

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
229
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
230
231
232

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
233
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
234
235
236

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
237
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
238

239
240
241
242
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)

243
244
245
246
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs)

247
248
249
250
251
    @slow
    def test_model_from_pretrained(self):
        for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DistilBertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
252
253
254
255
256
257
258
259


@require_torch
class DistilBertModelIntergrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
        model = DistilBertModel.from_pretrained("distilbert-base-uncased")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
260
261
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
        output = model(input_ids, attention_mask=attention_mask)[0]
262
263
264
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
265
            [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]
266
267
        )

268
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))