tokenization_openai.py 7.35 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
thomwolf's avatar
thomwolf committed
16
17
18
19
20
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
thomwolf's avatar
thomwolf committed
21
import os
thomwolf's avatar
thomwolf committed
22
import re
thomwolf's avatar
thomwolf committed
23
24
from io import open

25
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
26
from .tokenization_bert import BasicTokenizer
thomwolf's avatar
thomwolf committed
27
28
29

logger = logging.getLogger(__name__)

30
31
32
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
thomwolf's avatar
thomwolf committed
33
}
34
35
36
37
38
39
40
41
42
43

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json",
    },
    'merges_file':
    {
        'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt",
    },
thomwolf's avatar
thomwolf committed
44
}
45
46

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
thomwolf committed
47
48
    'openai-gpt': 512,
}
thomwolf's avatar
thomwolf committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

def text_standardize(text):
    """
    fixes some issues the spacy tokenizer had on books corpus
    also does some whitespace standardization
    """
    text = text.replace('—', '-')
    text = text.replace('–', '-')
    text = text.replace('―', '-')
    text = text.replace('…', '...')
    text = text.replace('´', "'")
    text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
    text = re.sub(r'\s*\n\s*', ' \n ', text)
    text = re.sub(r'[^\S\n]+', ' ', text)
    return text.strip()

77
class OpenAIGPTTokenizer(PreTrainedTokenizer):
thomwolf's avatar
thomwolf committed
78
    """
79
80
    BPE tokenizer. Peculiarities:
        - lower case all inputs
81
        - uses SpaCy tokenizer and ftfy for pre-BPE tokenization if they are installed, fallback to BERT's BasicTokenizer if not.
thomwolf's avatar
thomwolf committed
82
    """
83
84
85
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
thomwolf committed
86

87
88
89
    def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs):
        super(OpenAIGPTTokenizer, self).__init__(unk_token=unk_token, **kwargs)

thomwolf's avatar
thomwolf committed
90
91
        try:
            import ftfy
92
93
            from spacy.lang.en import English
            _nlp = English()
94
            self.nlp = _nlp.Defaults.create_tokenizer(_nlp)
95
            self.fix_text = ftfy.fix_text
thomwolf's avatar
thomwolf committed
96
        except ImportError:
97
            logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.")
98
            self.nlp = BasicTokenizer(do_lower_case=True)
99
            self.fix_text = None
thomwolf's avatar
thomwolf committed
100

thomwolf's avatar
thomwolf committed
101
        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
thomwolf's avatar
thomwolf committed
102
        self.decoder = {v:k for k,v in self.encoder.items()}
thomwolf's avatar
thomwolf committed
103
        merges = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
thomwolf's avatar
thomwolf committed
104
105
106
        merges = [tuple(merge.split()) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
107

108
109
110
    @property
    def vocab_size(self):
        return len(self.encoder)
thomwolf's avatar
thomwolf committed
111
112

    def bpe(self, token):
113
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
thomwolf's avatar
thomwolf committed
114
115
116
117
118
119
120
121
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
122
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
thomwolf's avatar
thomwolf committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

155
    def _tokenize(self, text):
thomwolf's avatar
thomwolf committed
156
        """ Tokenize a string. """
thomwolf's avatar
thomwolf committed
157
        split_tokens = []
158
159
160
161
162
163
164
165
166
167
        if self.fix_text is None:
            # Using BERT's BasicTokenizer
            text = self.nlp.tokenize(text)
            for token in text:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])
        else:
            # Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
            text = self.nlp(text_standardize(self.fix_text(text)))
            for token in text:
                split_tokens.extend([t for t in self.bpe(token.text.lower()).split(' ')])
thomwolf's avatar
thomwolf committed
168
169
        return split_tokens

170
171
172
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.encoder.get(token, self.encoder.get(self.unk_token))
thomwolf's avatar
thomwolf committed
173

174
175
176
    def _convert_id_to_token(self, index):
        """Converts an id in a token (BPE) using the vocab."""
        return self.decoder.get(index, self.unk_token)
177

178
179
180
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
thomwolf committed
181
        return out_string
182

183
    def save_vocabulary(self, save_directory):
184
        """Save the tokenizer vocabulary and merge files to a directory."""
185
186
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
187
            return
188
189
        vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
thomwolf's avatar
thomwolf committed
190
191
192
193

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

194
195
196
197
198
199
200
201
        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write(u'#version: 0.2\n')
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
thomwolf's avatar
thomwolf committed
202
                writer.write(' '.join(bpe_tokens) + u'\n')
203
                index += 1
thomwolf's avatar
thomwolf committed
204

205
        return vocab_file, merge_file