Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
c6bea084
Commit
c6bea084
authored
Feb 13, 2019
by
thomwolf
Browse files
OpenAI GPT Tokenizer can fallback on using BERT BasicTokenizer
parent
e7cfc46f
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
25 additions
and
10 deletions
+25
-10
pytorch_pretrained_bert/tokenization_openai.py
pytorch_pretrained_bert/tokenization_openai.py
+25
-10
No files found.
pytorch_pretrained_bert/tokenization_openai.py
View file @
c6bea084
...
@@ -26,6 +26,7 @@ from io import open
...
@@ -26,6 +26,7 @@ from io import open
from
tqdm
import
tqdm
from
tqdm
import
tqdm
from
.file_utils
import
cached_path
from
.file_utils
import
cached_path
from
.tokenization
import
BasicTokenizer
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
...
@@ -72,8 +73,9 @@ class OpenAIGPTTokenizer(object):
...
@@ -72,8 +73,9 @@ class OpenAIGPTTokenizer(object):
"""
"""
BPE tokenizer. Peculiarities:
BPE tokenizer. Peculiarities:
- lower case all inputs
- lower case all inputs
- uses SpaCy tokenizer
- uses SpaCy tokenizer and ftfy for pre-BPE tokenization if they are installed, fallback to BERT's BasicTokenizer if not.
- special tokens: additional symbols (ex: "__classify__") to add to a vocabulary.
- argument special_tokens and function set_special_tokens:
can be used to add additional symbols (ex: "__classify__") to a vocabulary.
"""
"""
@
classmethod
@
classmethod
def
from_pretrained
(
cls
,
pretrained_model_name_or_path
,
cache_dir
=
None
,
*
inputs
,
**
kwargs
):
def
from_pretrained
(
cls
,
pretrained_model_name_or_path
,
cache_dir
=
None
,
*
inputs
,
**
kwargs
):
...
@@ -122,12 +124,15 @@ class OpenAIGPTTokenizer(object):
...
@@ -122,12 +124,15 @@ class OpenAIGPTTokenizer(object):
try
:
try
:
import
ftfy
import
ftfy
import
spacy
import
spacy
self
.
nlp
=
spacy
.
load
(
'en'
,
disable
=
[
'parser'
,
'tagger'
,
'ner'
,
'textcat'
])
self
.
fix_text
=
ftfy
.
fix_text
except
ImportError
:
except
ImportError
:
raise
ImportError
(
"Please install ftfy and spacy to use OpenAI GPT tokenizer."
)
logger
.
warning
(
"ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy."
)
self
.
nlp
=
BasicTokenizer
(
do_lower_case
=
True
,
never_split
=
special_tokens
if
special_tokens
is
not
None
else
[])
self
.
fix_text
=
None
self
.
max_len
=
max_len
if
max_len
is
not
None
else
int
(
1e12
)
self
.
max_len
=
max_len
if
max_len
is
not
None
else
int
(
1e12
)
self
.
nlp
=
spacy
.
load
(
'en'
,
disable
=
[
'parser'
,
'tagger'
,
'ner'
,
'textcat'
])
self
.
fix_text
=
ftfy
.
fix_text
self
.
encoder
=
json
.
load
(
open
(
vocab_file
,
encoding
=
"utf-8"
))
self
.
encoder
=
json
.
load
(
open
(
vocab_file
,
encoding
=
"utf-8"
))
self
.
decoder
=
{
v
:
k
for
k
,
v
in
self
.
encoder
.
items
()}
self
.
decoder
=
{
v
:
k
for
k
,
v
in
self
.
encoder
.
items
()}
merges
=
open
(
merges_file
,
encoding
=
'utf-8'
).
read
().
split
(
'
\n
'
)[
1
:
-
1
]
merges
=
open
(
merges_file
,
encoding
=
'utf-8'
).
read
().
split
(
'
\n
'
)[
1
:
-
1
]
...
@@ -150,6 +155,9 @@ class OpenAIGPTTokenizer(object):
...
@@ -150,6 +155,9 @@ class OpenAIGPTTokenizer(object):
return
return
self
.
special_tokens
=
dict
((
tok
,
len
(
self
.
encoder
)
+
i
)
for
i
,
tok
in
enumerate
(
special_tokens
))
self
.
special_tokens
=
dict
((
tok
,
len
(
self
.
encoder
)
+
i
)
for
i
,
tok
in
enumerate
(
special_tokens
))
self
.
special_tokens_decoder
=
{
v
:
k
for
k
,
v
in
self
.
special_tokens
.
items
()}
self
.
special_tokens_decoder
=
{
v
:
k
for
k
,
v
in
self
.
special_tokens
.
items
()}
if
self
.
fix_text
is
None
:
# Using BERT's BasicTokenizer: we can update the tokenizer
self
.
nlp
.
never_split
=
special_tokens
logger
.
info
(
"Special tokens {}"
.
format
(
self
.
special_tokens
))
logger
.
info
(
"Special tokens {}"
.
format
(
self
.
special_tokens
))
def
bpe
(
self
,
token
):
def
bpe
(
self
,
token
):
...
@@ -198,9 +206,16 @@ class OpenAIGPTTokenizer(object):
...
@@ -198,9 +206,16 @@ class OpenAIGPTTokenizer(object):
def
tokenize
(
self
,
text
):
def
tokenize
(
self
,
text
):
""" Tokenize a string. """
""" Tokenize a string. """
split_tokens
=
[]
split_tokens
=
[]
text
=
self
.
nlp
(
text_standardize
(
self
.
fix_text
(
text
)))
if
self
.
fix_text
is
None
:
for
token
in
text
:
# Using BERT's BasicTokenizer
split_tokens
.
extend
([
t
for
t
in
self
.
bpe
(
token
.
text
.
lower
()).
split
(
' '
)])
text
=
self
.
nlp
.
tokenize
(
text
)
for
token
in
text
:
split_tokens
.
extend
([
t
for
t
in
self
.
bpe
(
token
).
split
(
' '
)])
else
:
# Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
text
=
self
.
nlp
(
text_standardize
(
self
.
fix_text
(
text
)))
for
token
in
text
:
split_tokens
.
extend
([
t
for
t
in
self
.
bpe
(
token
.
text
.
lower
()).
split
(
' '
)])
return
split_tokens
return
split_tokens
def
convert_tokens_to_ids
(
self
,
tokens
):
def
convert_tokens_to_ids
(
self
,
tokens
):
...
@@ -219,8 +234,8 @@ class OpenAIGPTTokenizer(object):
...
@@ -219,8 +234,8 @@ class OpenAIGPTTokenizer(object):
if
len
(
ids
)
>
self
.
max_len
:
if
len
(
ids
)
>
self
.
max_len
:
raise
ValueError
(
raise
ValueError
(
"Token indices sequence length is longer than the specified maximum "
"Token indices sequence length is longer than the specified maximum "
" sequence length for this
BER
T model ({} > {}). Running this"
" sequence length for this
OpenAI GP
T model ({} > {}). Running this"
" sequence through
BERT
will result in indexing errors"
.
format
(
len
(
ids
),
self
.
max_len
)
" sequence through
the model
will result in indexing errors"
.
format
(
len
(
ids
),
self
.
max_len
)
)
)
return
ids
return
ids
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment