tokenization_openai.py 11.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
thomwolf's avatar
thomwolf committed
16
17
18
19
20
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
thomwolf's avatar
thomwolf committed
21
import os
thomwolf's avatar
thomwolf committed
22
import re
thomwolf's avatar
thomwolf committed
23
24
25
import sys
from io import open

thomwolf's avatar
thomwolf committed
26
from tqdm import tqdm
thomwolf's avatar
thomwolf committed
27
28

from .file_utils import cached_path
29
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
thomwolf's avatar
thomwolf committed
30
from .tokenization_bert import BasicTokenizer
thomwolf's avatar
thomwolf committed
31
32
33

logger = logging.getLogger(__name__)

34
35
36
37
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
    'special_tokens_file': 'special_tokens.txt'
thomwolf's avatar
thomwolf committed
38
}
39
40
41
42
43
44
45
46
47
48
49
50
51
52

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json",
    },
    'merges_file':
    {
        'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt",
    },
    'special_tokens_file':
    {
        'openai-gpt': None,
    }
thomwolf's avatar
thomwolf committed
53
}
54
55

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
thomwolf committed
56
57
    'openai-gpt': 512,
}
thomwolf's avatar
thomwolf committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

def text_standardize(text):
    """
    fixes some issues the spacy tokenizer had on books corpus
    also does some whitespace standardization
    """
    text = text.replace('—', '-')
    text = text.replace('–', '-')
    text = text.replace('―', '-')
    text = text.replace('…', '...')
    text = text.replace('´', "'")
    text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
    text = re.sub(r'\s*\n\s*', ' \n ', text)
    text = re.sub(r'[^\S\n]+', ' ', text)
    return text.strip()

86
class OpenAIGPTTokenizer(PreTrainedTokenizer):
thomwolf's avatar
thomwolf committed
87
    """
88
89
    BPE tokenizer. Peculiarities:
        - lower case all inputs
90
91
92
        - uses SpaCy tokenizer and ftfy for pre-BPE tokenization if they are installed, fallback to BERT's BasicTokenizer if not.
        - argument special_tokens and function set_special_tokens:
            can be used to add additional symbols (ex: "__classify__") to a vocabulary.
thomwolf's avatar
thomwolf committed
93
    """
94
95
96
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
thomwolf committed
97

98
    def __init__(self, vocab_file, merges_file, special_tokens_file=None, special_tokens=None, max_len=None):
thomwolf's avatar
thomwolf committed
99
100
101
        try:
            import ftfy
            import spacy
102
103
            self.nlp = spacy.load('en', disable=['parser', 'tagger', 'ner', 'textcat'])
            self.fix_text = ftfy.fix_text
thomwolf's avatar
thomwolf committed
104
        except ImportError:
105
106
107
108
            logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.")
            self.nlp = BasicTokenizer(do_lower_case=True,
                                      never_split=special_tokens if special_tokens is not None else [])
            self.fix_text = None
thomwolf's avatar
thomwolf committed
109

thomwolf's avatar
thomwolf committed
110
        self.max_len = max_len if max_len is not None else int(1e12)
thomwolf's avatar
thomwolf committed
111
        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
thomwolf's avatar
thomwolf committed
112
        self.decoder = {v:k for k,v in self.encoder.items()}
thomwolf's avatar
thomwolf committed
113
        merges = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
thomwolf's avatar
thomwolf committed
114
115
116
        merges = [tuple(merge.split()) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
117
118
119
120
121
122
123
124

        all_special_tokens = []
        if special_tokens_file is not None:
            special_tokens_to_add = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
            all_special_tokens.extend(special_tokens_to_add)
        if special_tokens is not None and special_tokens:
            all_special_tokens.extend(special_tokens)

125
126
        self.special_tokens = {}
        self.special_tokens_decoder = {}
127
        self.set_special_tokens(all_special_tokens)
thomwolf's avatar
thomwolf committed
128

129
130
131
    def __len__(self):
        return len(self.encoder) + len(self.special_tokens)

thomwolf's avatar
thomwolf committed
132
    def set_special_tokens(self, special_tokens):
thomwolf's avatar
thomwolf committed
133
134
135
136
        """ Add a list of additional tokens to the encoder.
            The additional tokens are indexed starting from the last index of the
            current vocabulary in the order of the `special_tokens` list.
        """
thomwolf's avatar
logging  
thomwolf committed
137
138
139
140
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
thomwolf's avatar
thomwolf committed
141
        self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
thomwolf's avatar
logging  
thomwolf committed
142
        self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
143
144
145
        if self.fix_text is None:
            # Using BERT's BasicTokenizer: we can update the tokenizer
            self.nlp.never_split = special_tokens
thomwolf's avatar
logging  
thomwolf committed
146
        logger.info("Special tokens {}".format(self.special_tokens))
thomwolf's avatar
thomwolf committed
147
148

    def bpe(self, token):
149
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
thomwolf's avatar
thomwolf committed
150
151
152
153
154
155
156
157
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
158
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
thomwolf's avatar
thomwolf committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

thomwolf's avatar
thomwolf committed
191
    def tokenize(self, text):
thomwolf's avatar
thomwolf committed
192
        """ Tokenize a string. """
thomwolf's avatar
thomwolf committed
193
        split_tokens = []
194
195
196
197
198
199
200
201
202
203
        if self.fix_text is None:
            # Using BERT's BasicTokenizer
            text = self.nlp.tokenize(text)
            for token in text:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])
        else:
            # Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
            text = self.nlp(text_standardize(self.fix_text(text)))
            for token in text:
                split_tokens.extend([t for t in self.bpe(token.text.lower()).split(' ')])
thomwolf's avatar
thomwolf committed
204
205
206
        return split_tokens

    def convert_tokens_to_ids(self, tokens):
thomwolf's avatar
thomwolf committed
207
        """ Converts a sequence of tokens into ids using the vocab. """
thomwolf's avatar
thomwolf committed
208
        ids = []
thomwolf's avatar
thomwolf committed
209
        if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
thomwolf's avatar
logging  
thomwolf committed
210
211
212
213
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.encoder.get(tokens, 0)
thomwolf's avatar
thomwolf committed
214
215
216
217
218
219
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.encoder.get(token, 0))
        if len(ids) > self.max_len:
220
            logger.warning(
thomwolf's avatar
thomwolf committed
221
                "Token indices sequence length is longer than the specified maximum "
222
223
                " sequence length for this OpenAI GPT model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".format(len(ids), self.max_len)
thomwolf's avatar
thomwolf committed
224
225
226
            )
        return ids

thomwolf's avatar
thomwolf committed
227
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
thomwolf's avatar
thomwolf committed
228
229
230
        """Converts a sequence of ids in BPE tokens using the vocab."""
        tokens = []
        for i in ids:
thomwolf's avatar
logging  
thomwolf committed
231
            if i in self.special_tokens_decoder:
thomwolf's avatar
thomwolf committed
232
233
                if not skip_special_tokens:
                    tokens.append(self.special_tokens_decoder[i])
thomwolf's avatar
logging  
thomwolf committed
234
235
            else:
                tokens.append(self.decoder[i])
thomwolf's avatar
thomwolf committed
236
237
        return tokens

238
239
240
241
    def encode(self, text):
        return self.convert_tokens_to_ids(self.tokenize(text))

    def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
thomwolf's avatar
thomwolf committed
242
        """Converts a sequence of ids in a string."""
thomwolf's avatar
thomwolf committed
243
        tokens = self.convert_ids_to_tokens(ids, skip_special_tokens=skip_special_tokens)
thomwolf's avatar
thomwolf committed
244
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
thomwolf committed
245
246
        if clean_up_tokenization_spaces:
            out_string = out_string.replace('<unk>', '')
247
            out_string = clean_up_tokenization(out_string)
thomwolf's avatar
thomwolf committed
248
        return out_string
249
250

    def save_vocabulary(self, vocab_path):
251
252
253
254
        """Save the tokenizer vocabulary and merge files to a directory."""
        if not os.path.isdir(vocab_path):
            logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
            return
255
256
257
        vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['merges_file'])
        special_tokens_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['special_tokens_file'])
thomwolf's avatar
thomwolf committed
258
259
260
261

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

262
263
264
265
266
267
268
269
        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write(u'#version: 0.2\n')
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
thomwolf's avatar
thomwolf committed
270
                writer.write(' '.join(bpe_tokens) + u'\n')
271
                index += 1
thomwolf's avatar
thomwolf committed
272

273
        index = len(self.encoder)
thomwolf's avatar
thomwolf committed
274
        with open(special_tokens_file, 'w', encoding='utf-8') as writer:
275
276
277
278
279
            for token, token_index in sorted(self.special_tokens.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving special tokens vocabulary to {}: BPE indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(special_tokens_file))
                    index = token_index
thomwolf's avatar
thomwolf committed
280
                writer.write(token + u'\n')
281
                index += 1
thomwolf's avatar
thomwolf committed
282
283

        return vocab_file, merge_file, special_tokens_file