tokenization_openai.py 13.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
thomwolf's avatar
thomwolf committed
16
17
18
19
20
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
thomwolf's avatar
thomwolf committed
21
import os
thomwolf's avatar
thomwolf committed
22
import re
thomwolf's avatar
thomwolf committed
23
24
25
import sys
from io import open

thomwolf's avatar
thomwolf committed
26
from tqdm import tqdm
thomwolf's avatar
thomwolf committed
27
28

from .file_utils import cached_path
29
from .model_utils import clean_up_tokenization
thomwolf's avatar
thomwolf committed
30
from .tokenization_bert import BasicTokenizer
thomwolf's avatar
thomwolf committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44

logger = logging.getLogger(__name__)

PRETRAINED_VOCAB_ARCHIVE_MAP = {
    'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json",
}
PRETRAINED_MERGES_ARCHIVE_MAP = {
    'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
    'openai-gpt': 512,
}
VOCAB_NAME = 'vocab.json'
MERGES_NAME = 'merges.txt'
thomwolf's avatar
thomwolf committed
45
SPECIAL_TOKENS_NAME = 'special_tokens.txt'
thomwolf's avatar
thomwolf committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

def text_standardize(text):
    """
    fixes some issues the spacy tokenizer had on books corpus
    also does some whitespace standardization
    """
    text = text.replace('—', '-')
    text = text.replace('–', '-')
    text = text.replace('―', '-')
    text = text.replace('…', '...')
    text = text.replace('´', "'")
    text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
    text = re.sub(r'\s*\n\s*', ' \n ', text)
    text = re.sub(r'[^\S\n]+', ' ', text)
    return text.strip()

thomwolf's avatar
thomwolf committed
74
class OpenAIGPTTokenizer(object):
thomwolf's avatar
thomwolf committed
75
    """
76
77
    BPE tokenizer. Peculiarities:
        - lower case all inputs
78
79
80
        - uses SpaCy tokenizer and ftfy for pre-BPE tokenization if they are installed, fallback to BERT's BasicTokenizer if not.
        - argument special_tokens and function set_special_tokens:
            can be used to add additional symbols (ex: "__classify__") to a vocabulary.
thomwolf's avatar
thomwolf committed
81
    """
thomwolf's avatar
thomwolf committed
82
    @classmethod
thomwolf's avatar
thomwolf committed
83
    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
84
85
86
87
        """
        Instantiate a PreTrainedBertModel from a pre-trained model file.
        Download and cache the pre-trained model file if needed.
        """
thomwolf's avatar
thomwolf committed
88
89
90
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
            merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
91
            special_tokens_file = None
thomwolf's avatar
thomwolf committed
92
        else:
thomwolf's avatar
thomwolf committed
93
94
            vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
            merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
thomwolf's avatar
thomwolf committed
95
96
97
98
99
            special_tokens_file = os.path.join(pretrained_model_name_or_path, SPECIAL_TOKENS_NAME)
            if not os.path.exists(special_tokens_file):
                special_tokens_file = None
            else:
                logger.info("loading special tokens file {}".format(special_tokens_file))
thomwolf's avatar
thomwolf committed
100
101
102
103
        # redirect to the cache, if necessary
        try:
            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
            resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
104
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
105
106
107
108
109
110
111
112
113
114
115
116
117
            if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download vocabulary.".format(
                        vocab_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} and {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
                        pretrained_model_name_or_path,
                        vocab_file, merges_file))
thomwolf's avatar
thomwolf committed
118
119
120
121
122
123
124
125
126
            return None
        if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
            logger.info("loading vocabulary file {}".format(vocab_file))
            logger.info("loading merges file {}".format(merges_file))
        else:
            logger.info("loading vocabulary file {} from cache at {}".format(
                vocab_file, resolved_vocab_file))
            logger.info("loading merges file {} from cache at {}".format(
                merges_file, resolved_merges_file))
thomwolf's avatar
thomwolf committed
127
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
thomwolf's avatar
thomwolf committed
128
129
            # if we're using a pretrained model, ensure the tokenizer wont index sequences longer
            # than the number of positional embeddings
thomwolf's avatar
thomwolf committed
130
            max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
131
132
            kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
        # Instantiate tokenizer.
thomwolf's avatar
thomwolf committed
133
134
135
136
137
        if special_tokens_file and 'special_tokens' not in kwargs:
            special_tokens = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
        else:
            special_tokens = kwargs.pop('special_tokens', [])
        tokenizer = cls(resolved_vocab_file, resolved_merges_file, special_tokens=special_tokens, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
138
139
        return tokenizer

thomwolf's avatar
thomwolf committed
140
    def __init__(self, vocab_file, merges_file, special_tokens=None, max_len=None):
thomwolf's avatar
thomwolf committed
141
142
143
        try:
            import ftfy
            import spacy
144
145
            self.nlp = spacy.load('en', disable=['parser', 'tagger', 'ner', 'textcat'])
            self.fix_text = ftfy.fix_text
thomwolf's avatar
thomwolf committed
146
        except ImportError:
147
148
149
150
            logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.")
            self.nlp = BasicTokenizer(do_lower_case=True,
                                      never_split=special_tokens if special_tokens is not None else [])
            self.fix_text = None
thomwolf's avatar
thomwolf committed
151

thomwolf's avatar
thomwolf committed
152
        self.max_len = max_len if max_len is not None else int(1e12)
thomwolf's avatar
thomwolf committed
153
        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
thomwolf's avatar
thomwolf committed
154
        self.decoder = {v:k for k,v in self.encoder.items()}
thomwolf's avatar
thomwolf committed
155
        merges = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
thomwolf's avatar
thomwolf committed
156
157
158
        merges = [tuple(merge.split()) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
159
160
        self.special_tokens = {}
        self.special_tokens_decoder = {}
thomwolf's avatar
logging  
thomwolf committed
161
        self.set_special_tokens(special_tokens)
thomwolf's avatar
thomwolf committed
162

163
164
165
    def __len__(self):
        return len(self.encoder) + len(self.special_tokens)

thomwolf's avatar
thomwolf committed
166
    def set_special_tokens(self, special_tokens):
thomwolf's avatar
thomwolf committed
167
168
169
170
        """ Add a list of additional tokens to the encoder.
            The additional tokens are indexed starting from the last index of the
            current vocabulary in the order of the `special_tokens` list.
        """
thomwolf's avatar
logging  
thomwolf committed
171
172
173
174
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
thomwolf's avatar
thomwolf committed
175
        self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
thomwolf's avatar
logging  
thomwolf committed
176
        self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
177
178
179
        if self.fix_text is None:
            # Using BERT's BasicTokenizer: we can update the tokenizer
            self.nlp.never_split = special_tokens
thomwolf's avatar
logging  
thomwolf committed
180
        logger.info("Special tokens {}".format(self.special_tokens))
thomwolf's avatar
thomwolf committed
181
182

    def bpe(self, token):
183
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
thomwolf's avatar
thomwolf committed
184
185
186
187
188
189
190
191
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
192
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
thomwolf's avatar
thomwolf committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

thomwolf's avatar
thomwolf committed
225
    def tokenize(self, text):
thomwolf's avatar
thomwolf committed
226
        """ Tokenize a string. """
thomwolf's avatar
thomwolf committed
227
        split_tokens = []
228
229
230
231
232
233
234
235
236
237
        if self.fix_text is None:
            # Using BERT's BasicTokenizer
            text = self.nlp.tokenize(text)
            for token in text:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])
        else:
            # Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
            text = self.nlp(text_standardize(self.fix_text(text)))
            for token in text:
                split_tokens.extend([t for t in self.bpe(token.text.lower()).split(' ')])
thomwolf's avatar
thomwolf committed
238
239
240
        return split_tokens

    def convert_tokens_to_ids(self, tokens):
thomwolf's avatar
thomwolf committed
241
        """ Converts a sequence of tokens into ids using the vocab. """
thomwolf's avatar
thomwolf committed
242
        ids = []
thomwolf's avatar
thomwolf committed
243
        if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
thomwolf's avatar
logging  
thomwolf committed
244
245
246
247
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.encoder.get(tokens, 0)
thomwolf's avatar
thomwolf committed
248
249
250
251
252
253
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.encoder.get(token, 0))
        if len(ids) > self.max_len:
254
            logger.warning(
thomwolf's avatar
thomwolf committed
255
                "Token indices sequence length is longer than the specified maximum "
256
257
                " sequence length for this OpenAI GPT model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".format(len(ids), self.max_len)
thomwolf's avatar
thomwolf committed
258
259
260
            )
        return ids

thomwolf's avatar
thomwolf committed
261
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
thomwolf's avatar
thomwolf committed
262
263
264
        """Converts a sequence of ids in BPE tokens using the vocab."""
        tokens = []
        for i in ids:
thomwolf's avatar
logging  
thomwolf committed
265
            if i in self.special_tokens_decoder:
thomwolf's avatar
thomwolf committed
266
267
                if not skip_special_tokens:
                    tokens.append(self.special_tokens_decoder[i])
thomwolf's avatar
logging  
thomwolf committed
268
269
            else:
                tokens.append(self.decoder[i])
thomwolf's avatar
thomwolf committed
270
271
        return tokens

272
273
274
275
    def encode(self, text):
        return self.convert_tokens_to_ids(self.tokenize(text))

    def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
thomwolf's avatar
thomwolf committed
276
        """Converts a sequence of ids in a string."""
thomwolf's avatar
thomwolf committed
277
        tokens = self.convert_ids_to_tokens(ids, skip_special_tokens=skip_special_tokens)
thomwolf's avatar
thomwolf committed
278
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
thomwolf committed
279
280
        if clean_up_tokenization_spaces:
            out_string = out_string.replace('<unk>', '')
281
            out_string = clean_up_tokenization(out_string)
thomwolf's avatar
thomwolf committed
282
        return out_string
283
284

    def save_vocabulary(self, vocab_path):
285
286
287
288
        """Save the tokenizer vocabulary and merge files to a directory."""
        if not os.path.isdir(vocab_path):
            logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
            return
289
290
        vocab_file = os.path.join(vocab_path, VOCAB_NAME)
        merge_file = os.path.join(vocab_path, MERGES_NAME)
thomwolf's avatar
thomwolf committed
291
292
293
294
295
        special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME)

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

296
297
298
299
300
301
302
303
        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write(u'#version: 0.2\n')
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
thomwolf's avatar
thomwolf committed
304
                writer.write(' '.join(bpe_tokens) + u'\n')
305
                index += 1
thomwolf's avatar
thomwolf committed
306

307
        index = len(self.encoder)
thomwolf's avatar
thomwolf committed
308
        with open(special_tokens_file, 'w', encoding='utf-8') as writer:
309
310
311
312
313
            for token, token_index in sorted(self.special_tokens.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving special tokens vocabulary to {}: BPE indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(special_tokens_file))
                    index = token_index
thomwolf's avatar
thomwolf committed
314
                writer.write(token + u'\n')
315
                index += 1
thomwolf's avatar
thomwolf committed
316
317

        return vocab_file, merge_file, special_tokens_file