run_qa.py 32 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
17
Fine-tuning the library models for question answering using a slightly adapted version of the 馃 Trainer.
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
20
21
22
23
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.

import logging
import os
import sys
24
import warnings
Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
27
from dataclasses import dataclass, field
from typing import Optional

28
import datasets
29
import evaluate
30
from datasets import load_dataset
31
32
from trainer_qa import QuestionAnsweringTrainer
from utils_qa import postprocess_qa_predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46

import transformers
from transformers import (
    AutoConfig,
    AutoModelForQuestionAnswering,
    AutoTokenizer,
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    PreTrainedTokenizerFast,
    TrainingArguments,
    default_data_collator,
    set_seed,
)
47
from transformers.trainer_utils import get_last_checkpoint
48
from transformers.utils import check_min_version, send_example_telemetry
49
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
50
51


52
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
53
check_min_version("4.35.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
54

55
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
56

Sylvain Gugger's avatar
Sylvain Gugger committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"},
    )
79
80
81
82
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
83
84
    token: str = field(
        default=None,
85
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
86
            "help": (
87
88
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
89
            )
90
91
        },
    )
92
93
94
95
96
97
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
98
99
100
101
102
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
103
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
104
105
106
107
                "execute code present on the Hub on your local machine."
            )
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
127
128
129
130
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."},
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
133
134
135
136
137
138
139
140
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_seq_length: int = field(
        default=384,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
141
142
143
144
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
145
146
147
148
149
        },
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152
153
            "help": (
                "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when"
                " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155
        },
    )
156
157
158
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
161
162
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
163
164
        },
    )
165
    max_eval_samples: Optional[int] = field(
166
167
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
168
169
170
171
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
172
173
        },
    )
174
    max_predict_samples: Optional[int] = field(
175
176
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
177
178
179
180
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
181
182
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
183
184
185
186
187
188
    version_2_with_negative: bool = field(
        default=False, metadata={"help": "If true, some of the examples do not have an answer."}
    )
    null_score_diff_threshold: float = field(
        default=0.0,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
191
192
193
            "help": (
                "The threshold used to select the null answer: if the best answer has a score that is less than "
                "the score of the null answer minus this threshold, the null answer is selected for this example. "
                "Only useful when `version_2_with_negative=True`."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
194
195
196
197
198
199
200
201
202
203
204
205
206
        },
    )
    doc_stride: int = field(
        default=128,
        metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
    )
    n_best_size: int = field(
        default=20,
        metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
    )
    max_answer_length: int = field(
        default=30,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
207
208
209
210
            "help": (
                "The maximum length of an answer that can be generated. This is needed because the start "
                "and end predictions are not conditioned on one another."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
211
212
213
214
        },
    )

    def __post_init__(self):
215
216
217
218
219
220
221
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training/validation file/test_file.")
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
225
226
227
228
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
229
230
231
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
Sylvain Gugger's avatar
Sylvain Gugger committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

247
248
249
250
251
252
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

253
254
255
256
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_qa", model_args, data_args)

Sylvain Gugger's avatar
Sylvain Gugger committed
257
258
    # Setup logging
    logging.basicConfig(
259
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
260
        datefmt="%m/%d/%Y %H:%M:%S",
261
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
262
    )
263

264
265
266
267
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

268
269
270
271
272
273
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
274
275
276
277

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
278
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
Sylvain Gugger's avatar
Sylvain Gugger committed
279
    )
280
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
311
        raw_datasets = load_dataset(
312
313
314
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
315
            token=model_args.token,
316
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
317
318
319
320
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
321
322
            extension = data_args.train_file.split(".")[-1]

Sylvain Gugger's avatar
Sylvain Gugger committed
323
324
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
325
            extension = data_args.validation_file.split(".")[-1]
326
327
328
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
329
330
331
332
333
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            field="data",
            cache_dir=model_args.cache_dir,
334
            token=model_args.token,
335
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
336
337
338
339
340
341
342
343
344
345
346
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
347
        revision=model_args.model_revision,
348
        token=model_args.token,
349
        trust_remote_code=model_args.trust_remote_code,
Sylvain Gugger's avatar
Sylvain Gugger committed
350
351
352
353
354
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=True,
355
        revision=model_args.model_revision,
356
        token=model_args.token,
357
        trust_remote_code=model_args.trust_remote_code,
Sylvain Gugger's avatar
Sylvain Gugger committed
358
359
360
361
362
363
    )
    model = AutoModelForQuestionAnswering.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
364
        revision=model_args.model_revision,
365
        token=model_args.token,
366
        trust_remote_code=model_args.trust_remote_code,
Sylvain Gugger's avatar
Sylvain Gugger committed
367
368
369
370
371
    )

    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
372
373
374
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
377
378
379
        )

    # Preprocessing the datasets.
    # Preprocessing is slighlty different for training and evaluation.
    if training_args.do_train:
380
        column_names = raw_datasets["train"].column_names
381
    elif training_args.do_eval:
382
        column_names = raw_datasets["validation"].column_names
383
    else:
384
        column_names = raw_datasets["test"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
385
386
387
388
389
390
391
    question_column_name = "question" if "question" in column_names else column_names[0]
    context_column_name = "context" if "context" in column_names else column_names[1]
    answer_column_name = "answers" if "answers" in column_names else column_names[2]

    # Padding side determines if we do (question|context) or (context|question).
    pad_on_right = tokenizer.padding_side == "right"

392
    if data_args.max_seq_length > tokenizer.model_max_length:
393
        logger.warning(
394
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the "
395
396
397
398
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
399
400
    # Training preprocessing
    def prepare_train_features(examples):
401
402
403
404
405
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

Sylvain Gugger's avatar
Sylvain Gugger committed
406
407
408
409
410
411
412
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
413
            max_length=max_seq_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        # The offset mappings will give us a map from token to character position in the original context. This will
        # help us compute the start_positions and end_positions.
        offset_mapping = tokenized_examples.pop("offset_mapping")

        # Let's label those examples!
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []

        for i, offsets in enumerate(offset_mapping):
            # We will label impossible answers with the index of the CLS token.
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            answers = examples[answer_column_name][sample_index]
            # If no answers are given, set the cls_index as answer.
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                # Start/end character index of the answer in the text.
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                # Start token index of the current span in the text.
                token_start_index = 0
                while sequence_ids[token_start_index] != (1 if pad_on_right else 0):
                    token_start_index += 1

                # End token index of the current span in the text.
                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != (1 if pad_on_right else 0):
                    token_end_index -= 1

                # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
                        token_start_index += 1
                    tokenized_examples["start_positions"].append(token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized_examples["end_positions"].append(token_end_index + 1)

        return tokenized_examples

    if training_args.do_train:
478
        if "train" not in raw_datasets:
479
            raise ValueError("--do_train requires a train dataset")
480
        train_dataset = raw_datasets["train"]
481
        if data_args.max_train_samples is not None:
Akul Agrawal's avatar
Akul Agrawal committed
482
            # We will select sample from whole data if argument is specified
483
484
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
485
        # Create train feature from dataset
486
487
488
489
490
491
492
493
494
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                prepare_train_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
495
496
        if data_args.max_train_samples is not None:
            # Number of samples might increase during Feature Creation, We select only specified max samples
497
498
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
499
500
501

    # Validation preprocessing
    def prepare_validation_features(examples):
502
503
504
505
506
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

Sylvain Gugger's avatar
Sylvain Gugger committed
507
508
509
510
511
512
513
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
514
            max_length=max_seq_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        tokenized_examples["example_id"] = []

        for i in range(len(tokenized_examples["input_ids"])):
            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)
            context_index = 1 if pad_on_right else 0

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized_examples["example_id"].append(examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized_examples["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_index else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][i])
            ]

        return tokenized_examples

    if training_args.do_eval:
548
        if "validation" not in raw_datasets:
549
            raise ValueError("--do_eval requires a validation dataset")
550
        eval_examples = raw_datasets["validation"]
551
        if data_args.max_eval_samples is not None:
552
            # We will select sample from whole data
553
554
            max_eval_samples = min(len(eval_examples), data_args.max_eval_samples)
            eval_examples = eval_examples.select(range(max_eval_samples))
555
        # Validation Feature Creation
556
557
558
559
560
561
562
563
564
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
565
        if data_args.max_eval_samples is not None:
566
            # During Feature creation dataset samples might increase, we will select required samples again
567
568
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
569

570
    if training_args.do_predict:
571
        if "test" not in raw_datasets:
572
            raise ValueError("--do_predict requires a test dataset")
573
        predict_examples = raw_datasets["test"]
574
        if data_args.max_predict_samples is not None:
575
            # We will select sample from whole data
576
577
            predict_examples = predict_examples.select(range(data_args.max_predict_samples))
        # Predict Feature Creation
578
579
580
581
582
583
584
585
586
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
587
        if data_args.max_predict_samples is not None:
588
            # During Feature creation dataset samples might increase, we will select required samples again
589
590
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
591

Sylvain Gugger's avatar
Sylvain Gugger committed
592
593
594
    # Data collator
    # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data
    # collator.
595
596
597
598
599
    data_collator = (
        default_data_collator
        if data_args.pad_to_max_length
        else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
600
601

    # Post-processing:
602
    def post_processing_function(examples, features, predictions, stage="eval"):
Sylvain Gugger's avatar
Sylvain Gugger committed
603
604
605
606
607
608
609
610
611
612
        # Post-processing: we match the start logits and end logits to answers in the original context.
        predictions = postprocess_qa_predictions(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=data_args.version_2_with_negative,
            n_best_size=data_args.n_best_size,
            max_answer_length=data_args.max_answer_length,
            null_score_diff_threshold=data_args.null_score_diff_threshold,
            output_dir=training_args.output_dir,
613
            log_level=log_level,
614
            prefix=stage,
Sylvain Gugger's avatar
Sylvain Gugger committed
615
616
617
618
        )
        # Format the result to the format the metric expects.
        if data_args.version_2_with_negative:
            formatted_predictions = [
619
                {"id": str(k), "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
Sylvain Gugger's avatar
Sylvain Gugger committed
620
621
            ]
        else:
622
            formatted_predictions = [{"id": str(k), "prediction_text": v} for k, v in predictions.items()]
623

624
        references = [{"id": str(ex["id"]), "answers": ex[answer_column_name]} for ex in examples]
Sylvain Gugger's avatar
Sylvain Gugger committed
625
626
        return EvalPrediction(predictions=formatted_predictions, label_ids=references)

627
    metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad")
Sylvain Gugger's avatar
Sylvain Gugger committed
628
629
630
631
632
633
634
635
636

    def compute_metrics(p: EvalPrediction):
        return metric.compute(predictions=p.predictions, references=p.label_ids)

    # Initialize our Trainer
    trainer = QuestionAnsweringTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
637
        eval_dataset=eval_dataset if training_args.do_eval else None,
638
        eval_examples=eval_examples if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
639
640
641
642
643
644
645
646
        tokenizer=tokenizer,
        data_collator=data_collator,
        post_process_function=post_processing_function,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
647
648
649
650
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
651
652
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
653
654
        trainer.save_model()  # Saves the tokenizer too for easy upload

655
        metrics = train_result.metrics
656
657
658
659
660
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

661
662
663
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
664

Sylvain Gugger's avatar
Sylvain Gugger committed
665
666
667
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
668
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
669

670
671
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Sylvain Gugger's avatar
Sylvain Gugger committed
672

673
674
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
675

676
677
678
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
679
        results = trainer.predict(predict_dataset, predict_examples)
680
681
        metrics = results.metrics

682
683
684
685
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
686

687
688
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
689

690
691
692
693
694
695
696
697
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
698

699
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
700
        trainer.push_to_hub(**kwargs)
701
702
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
703

Sylvain Gugger's avatar
Sylvain Gugger committed
704
705
706
707
708
709
710
711

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()