run_qa.py 31.4 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
17
Fine-tuning the library models for question answering using a slightly adapted version of the 馃 Trainer.
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
20
21
22
23
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.

import logging
import os
import sys
24
import warnings
Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
27
from dataclasses import dataclass, field
from typing import Optional

28
import datasets
29
import evaluate
30
from datasets import load_dataset
31
32
from trainer_qa import QuestionAnsweringTrainer
from utils_qa import postprocess_qa_predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46

import transformers
from transformers import (
    AutoConfig,
    AutoModelForQuestionAnswering,
    AutoTokenizer,
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    PreTrainedTokenizerFast,
    TrainingArguments,
    default_data_collator,
    set_seed,
)
47
from transformers.trainer_utils import get_last_checkpoint
48
from transformers.utils import check_min_version, send_example_telemetry
49
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
50
51


52
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
53
check_min_version("4.32.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
54

55
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
56

Sylvain Gugger's avatar
Sylvain Gugger committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"},
    )
79
80
81
82
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
83
84
    token: str = field(
        default=None,
85
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
86
            "help": (
87
88
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
89
            )
90
91
        },
    )
92
93
94
95
96
97
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
117
118
119
120
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."},
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
121
122
123
124
125
126
127
128
129
130
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_seq_length: int = field(
        default=384,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
133
134
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
135
136
137
138
139
        },
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
140
141
142
143
            "help": (
                "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when"
                " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
        },
    )
146
147
148
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
151
152
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
153
154
        },
    )
155
    max_eval_samples: Optional[int] = field(
156
157
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
160
161
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
162
163
        },
    )
164
    max_predict_samples: Optional[int] = field(
165
166
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
167
168
169
170
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
171
172
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
177
178
    version_2_with_negative: bool = field(
        default=False, metadata={"help": "If true, some of the examples do not have an answer."}
    )
    null_score_diff_threshold: float = field(
        default=0.0,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
179
180
181
182
183
            "help": (
                "The threshold used to select the null answer: if the best answer has a score that is less than "
                "the score of the null answer minus this threshold, the null answer is selected for this example. "
                "Only useful when `version_2_with_negative=True`."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
184
185
186
187
188
189
190
191
192
193
194
195
196
        },
    )
    doc_stride: int = field(
        default=128,
        metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
    )
    n_best_size: int = field(
        default=20,
        metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
    )
    max_answer_length: int = field(
        default=30,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
197
198
199
200
            "help": (
                "The maximum length of an answer that can be generated. This is needed because the start "
                "and end predictions are not conditioned on one another."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
201
202
203
204
        },
    )

    def __post_init__(self):
205
206
207
208
209
210
211
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training/validation file/test_file.")
Sylvain Gugger's avatar
Sylvain Gugger committed
212
213
214
215
216
217
218
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
219
220
221
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

237
238
239
240
241
242
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

243
244
245
246
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_qa", model_args, data_args)

Sylvain Gugger's avatar
Sylvain Gugger committed
247
248
    # Setup logging
    logging.basicConfig(
249
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
250
        datefmt="%m/%d/%Y %H:%M:%S",
251
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
252
    )
253

254
255
256
257
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

258
259
260
261
262
263
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
264
265
266
267

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
268
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
Sylvain Gugger's avatar
Sylvain Gugger committed
269
    )
270
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
301
        raw_datasets = load_dataset(
302
303
304
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
305
            token=model_args.token,
306
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
307
308
309
310
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
311
312
            extension = data_args.train_file.split(".")[-1]

Sylvain Gugger's avatar
Sylvain Gugger committed
313
314
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
315
            extension = data_args.validation_file.split(".")[-1]
316
317
318
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
319
320
321
322
323
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            field="data",
            cache_dir=model_args.cache_dir,
324
            token=model_args.token,
325
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
326
327
328
329
330
331
332
333
334
335
336
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
337
        revision=model_args.model_revision,
338
        token=model_args.token,
Sylvain Gugger's avatar
Sylvain Gugger committed
339
340
341
342
343
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=True,
344
        revision=model_args.model_revision,
345
        token=model_args.token,
Sylvain Gugger's avatar
Sylvain Gugger committed
346
347
348
349
350
351
    )
    model = AutoModelForQuestionAnswering.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
352
        revision=model_args.model_revision,
353
        token=model_args.token,
Sylvain Gugger's avatar
Sylvain Gugger committed
354
355
356
357
358
    )

    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
359
360
361
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
Sylvain Gugger's avatar
Sylvain Gugger committed
362
363
364
365
366
        )

    # Preprocessing the datasets.
    # Preprocessing is slighlty different for training and evaluation.
    if training_args.do_train:
367
        column_names = raw_datasets["train"].column_names
368
    elif training_args.do_eval:
369
        column_names = raw_datasets["validation"].column_names
370
    else:
371
        column_names = raw_datasets["test"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
372
373
374
375
376
377
378
    question_column_name = "question" if "question" in column_names else column_names[0]
    context_column_name = "context" if "context" in column_names else column_names[1]
    answer_column_name = "answers" if "answers" in column_names else column_names[2]

    # Padding side determines if we do (question|context) or (context|question).
    pad_on_right = tokenizer.padding_side == "right"

379
    if data_args.max_seq_length > tokenizer.model_max_length:
380
        logger.warning(
381
382
383
384
385
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
386
387
    # Training preprocessing
    def prepare_train_features(examples):
388
389
390
391
392
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

Sylvain Gugger's avatar
Sylvain Gugger committed
393
394
395
396
397
398
399
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
400
            max_length=max_seq_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        # The offset mappings will give us a map from token to character position in the original context. This will
        # help us compute the start_positions and end_positions.
        offset_mapping = tokenized_examples.pop("offset_mapping")

        # Let's label those examples!
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []

        for i, offsets in enumerate(offset_mapping):
            # We will label impossible answers with the index of the CLS token.
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            answers = examples[answer_column_name][sample_index]
            # If no answers are given, set the cls_index as answer.
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                # Start/end character index of the answer in the text.
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                # Start token index of the current span in the text.
                token_start_index = 0
                while sequence_ids[token_start_index] != (1 if pad_on_right else 0):
                    token_start_index += 1

                # End token index of the current span in the text.
                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != (1 if pad_on_right else 0):
                    token_end_index -= 1

                # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
                        token_start_index += 1
                    tokenized_examples["start_positions"].append(token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized_examples["end_positions"].append(token_end_index + 1)

        return tokenized_examples

    if training_args.do_train:
465
        if "train" not in raw_datasets:
466
            raise ValueError("--do_train requires a train dataset")
467
        train_dataset = raw_datasets["train"]
468
        if data_args.max_train_samples is not None:
Akul Agrawal's avatar
Akul Agrawal committed
469
            # We will select sample from whole data if argument is specified
470
471
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
472
        # Create train feature from dataset
473
474
475
476
477
478
479
480
481
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                prepare_train_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
482
483
        if data_args.max_train_samples is not None:
            # Number of samples might increase during Feature Creation, We select only specified max samples
484
485
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
486
487
488

    # Validation preprocessing
    def prepare_validation_features(examples):
489
490
491
492
493
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

Sylvain Gugger's avatar
Sylvain Gugger committed
494
495
496
497
498
499
500
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
501
            max_length=max_seq_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        tokenized_examples["example_id"] = []

        for i in range(len(tokenized_examples["input_ids"])):
            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)
            context_index = 1 if pad_on_right else 0

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized_examples["example_id"].append(examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized_examples["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_index else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][i])
            ]

        return tokenized_examples

    if training_args.do_eval:
535
        if "validation" not in raw_datasets:
536
            raise ValueError("--do_eval requires a validation dataset")
537
        eval_examples = raw_datasets["validation"]
538
        if data_args.max_eval_samples is not None:
539
            # We will select sample from whole data
540
541
            max_eval_samples = min(len(eval_examples), data_args.max_eval_samples)
            eval_examples = eval_examples.select(range(max_eval_samples))
542
        # Validation Feature Creation
543
544
545
546
547
548
549
550
551
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
552
        if data_args.max_eval_samples is not None:
553
            # During Feature creation dataset samples might increase, we will select required samples again
554
555
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
556

557
    if training_args.do_predict:
558
        if "test" not in raw_datasets:
559
            raise ValueError("--do_predict requires a test dataset")
560
        predict_examples = raw_datasets["test"]
561
        if data_args.max_predict_samples is not None:
562
            # We will select sample from whole data
563
564
            predict_examples = predict_examples.select(range(data_args.max_predict_samples))
        # Predict Feature Creation
565
566
567
568
569
570
571
572
573
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
574
        if data_args.max_predict_samples is not None:
575
            # During Feature creation dataset samples might increase, we will select required samples again
576
577
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
578

Sylvain Gugger's avatar
Sylvain Gugger committed
579
580
581
    # Data collator
    # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data
    # collator.
582
583
584
585
586
    data_collator = (
        default_data_collator
        if data_args.pad_to_max_length
        else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
587
588

    # Post-processing:
589
    def post_processing_function(examples, features, predictions, stage="eval"):
Sylvain Gugger's avatar
Sylvain Gugger committed
590
591
592
593
594
595
596
597
598
599
        # Post-processing: we match the start logits and end logits to answers in the original context.
        predictions = postprocess_qa_predictions(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=data_args.version_2_with_negative,
            n_best_size=data_args.n_best_size,
            max_answer_length=data_args.max_answer_length,
            null_score_diff_threshold=data_args.null_score_diff_threshold,
            output_dir=training_args.output_dir,
600
            log_level=log_level,
601
            prefix=stage,
Sylvain Gugger's avatar
Sylvain Gugger committed
602
603
604
605
        )
        # Format the result to the format the metric expects.
        if data_args.version_2_with_negative:
            formatted_predictions = [
606
                {"id": str(k), "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
Sylvain Gugger's avatar
Sylvain Gugger committed
607
608
            ]
        else:
609
            formatted_predictions = [{"id": str(k), "prediction_text": v} for k, v in predictions.items()]
610

611
        references = [{"id": str(ex["id"]), "answers": ex[answer_column_name]} for ex in examples]
Sylvain Gugger's avatar
Sylvain Gugger committed
612
613
        return EvalPrediction(predictions=formatted_predictions, label_ids=references)

614
    metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad")
Sylvain Gugger's avatar
Sylvain Gugger committed
615
616
617
618
619
620
621
622
623

    def compute_metrics(p: EvalPrediction):
        return metric.compute(predictions=p.predictions, references=p.label_ids)

    # Initialize our Trainer
    trainer = QuestionAnsweringTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
624
        eval_dataset=eval_dataset if training_args.do_eval else None,
625
        eval_examples=eval_examples if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
626
627
628
629
630
631
632
633
        tokenizer=tokenizer,
        data_collator=data_collator,
        post_process_function=post_processing_function,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
634
635
636
637
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
638
639
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
640
641
        trainer.save_model()  # Saves the tokenizer too for easy upload

642
        metrics = train_result.metrics
643
644
645
646
647
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

648
649
650
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
651

Sylvain Gugger's avatar
Sylvain Gugger committed
652
653
654
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
655
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
656

657
658
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Sylvain Gugger's avatar
Sylvain Gugger committed
659

660
661
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
662

663
664
665
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
666
        results = trainer.predict(predict_dataset, predict_examples)
667
668
        metrics = results.metrics

669
670
671
672
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
673

674
675
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
676

677
678
679
680
681
682
683
684
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
685

686
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
687
        trainer.push_to_hub(**kwargs)
688
689
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
690

Sylvain Gugger's avatar
Sylvain Gugger committed
691
692
693
694
695
696
697
698

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()