tokenization_openai.py 13.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
thomwolf's avatar
thomwolf committed
16
17
18
19
20
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
thomwolf's avatar
thomwolf committed
21
import os
thomwolf's avatar
thomwolf committed
22
import re
thomwolf's avatar
thomwolf committed
23
24
25
import sys
from io import open

thomwolf's avatar
thomwolf committed
26
from tqdm import tqdm
thomwolf's avatar
thomwolf committed
27
28

from .file_utils import cached_path
29
from .tokenization import BasicTokenizer
thomwolf's avatar
thomwolf committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43

logger = logging.getLogger(__name__)

PRETRAINED_VOCAB_ARCHIVE_MAP = {
    'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json",
}
PRETRAINED_MERGES_ARCHIVE_MAP = {
    'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
    'openai-gpt': 512,
}
VOCAB_NAME = 'vocab.json'
MERGES_NAME = 'merges.txt'
thomwolf's avatar
thomwolf committed
44
SPECIAL_TOKENS_NAME = 'special_tokens.txt'
thomwolf's avatar
thomwolf committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

def text_standardize(text):
    """
    fixes some issues the spacy tokenizer had on books corpus
    also does some whitespace standardization
    """
    text = text.replace('—', '-')
    text = text.replace('–', '-')
    text = text.replace('―', '-')
    text = text.replace('…', '...')
    text = text.replace('´', "'")
    text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
    text = re.sub(r'\s*\n\s*', ' \n ', text)
    text = re.sub(r'[^\S\n]+', ' ', text)
    return text.strip()

thomwolf's avatar
thomwolf committed
73
class OpenAIGPTTokenizer(object):
thomwolf's avatar
thomwolf committed
74
    """
75
76
    BPE tokenizer. Peculiarities:
        - lower case all inputs
77
78
79
        - uses SpaCy tokenizer and ftfy for pre-BPE tokenization if they are installed, fallback to BERT's BasicTokenizer if not.
        - argument special_tokens and function set_special_tokens:
            can be used to add additional symbols (ex: "__classify__") to a vocabulary.
thomwolf's avatar
thomwolf committed
80
    """
thomwolf's avatar
thomwolf committed
81
    @classmethod
thomwolf's avatar
thomwolf committed
82
    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
83
84
85
86
        """
        Instantiate a PreTrainedBertModel from a pre-trained model file.
        Download and cache the pre-trained model file if needed.
        """
thomwolf's avatar
thomwolf committed
87
88
89
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
            merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
90
            special_tokens_file = None
thomwolf's avatar
thomwolf committed
91
        else:
thomwolf's avatar
thomwolf committed
92
93
            vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
            merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
thomwolf's avatar
thomwolf committed
94
95
96
97
98
            special_tokens_file = os.path.join(pretrained_model_name_or_path, SPECIAL_TOKENS_NAME)
            if not os.path.exists(special_tokens_file):
                special_tokens_file = None
            else:
                logger.info("loading special tokens file {}".format(special_tokens_file))
thomwolf's avatar
thomwolf committed
99
100
101
102
        # redirect to the cache, if necessary
        try:
            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
            resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
103
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
104
105
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
thomwolf's avatar
thomwolf committed
106
107
108
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
                    pretrained_model_name_or_path,
thomwolf's avatar
thomwolf committed
109
                    ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
thomwolf's avatar
thomwolf committed
110
111
                    pretrained_model_name_or_path,
                    vocab_file, merges_file))
thomwolf's avatar
thomwolf committed
112
113
114
115
116
117
118
119
120
            return None
        if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
            logger.info("loading vocabulary file {}".format(vocab_file))
            logger.info("loading merges file {}".format(merges_file))
        else:
            logger.info("loading vocabulary file {} from cache at {}".format(
                vocab_file, resolved_vocab_file))
            logger.info("loading merges file {} from cache at {}".format(
                merges_file, resolved_merges_file))
thomwolf's avatar
thomwolf committed
121
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
thomwolf's avatar
thomwolf committed
122
123
            # if we're using a pretrained model, ensure the tokenizer wont index sequences longer
            # than the number of positional embeddings
thomwolf's avatar
thomwolf committed
124
            max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
125
126
            kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
        # Instantiate tokenizer.
thomwolf's avatar
thomwolf committed
127
128
129
130
131
        if special_tokens_file and 'special_tokens' not in kwargs:
            special_tokens = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
        else:
            special_tokens = kwargs.pop('special_tokens', [])
        tokenizer = cls(resolved_vocab_file, resolved_merges_file, special_tokens=special_tokens, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
132
133
        return tokenizer

thomwolf's avatar
thomwolf committed
134
    def __init__(self, vocab_file, merges_file, special_tokens=None, max_len=None):
thomwolf's avatar
thomwolf committed
135
136
137
        try:
            import ftfy
            import spacy
138
139
            self.nlp = spacy.load('en', disable=['parser', 'tagger', 'ner', 'textcat'])
            self.fix_text = ftfy.fix_text
thomwolf's avatar
thomwolf committed
140
        except ImportError:
141
142
143
144
            logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.")
            self.nlp = BasicTokenizer(do_lower_case=True,
                                      never_split=special_tokens if special_tokens is not None else [])
            self.fix_text = None
thomwolf's avatar
thomwolf committed
145

thomwolf's avatar
thomwolf committed
146
        self.max_len = max_len if max_len is not None else int(1e12)
thomwolf's avatar
thomwolf committed
147
        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
thomwolf's avatar
thomwolf committed
148
        self.decoder = {v:k for k,v in self.encoder.items()}
thomwolf's avatar
thomwolf committed
149
        merges = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
thomwolf's avatar
thomwolf committed
150
151
152
        merges = [tuple(merge.split()) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
thomwolf's avatar
logging  
thomwolf committed
153
        self.set_special_tokens(special_tokens)
thomwolf's avatar
thomwolf committed
154

155
156
157
    def __len__(self):
        return len(self.encoder) + len(self.special_tokens)

thomwolf's avatar
thomwolf committed
158
    def set_special_tokens(self, special_tokens):
thomwolf's avatar
thomwolf committed
159
160
161
162
        """ Add a list of additional tokens to the encoder.
            The additional tokens are indexed starting from the last index of the
            current vocabulary in the order of the `special_tokens` list.
        """
thomwolf's avatar
logging  
thomwolf committed
163
164
165
166
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
thomwolf's avatar
thomwolf committed
167
        self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
thomwolf's avatar
logging  
thomwolf committed
168
        self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
169
170
171
        if self.fix_text is None:
            # Using BERT's BasicTokenizer: we can update the tokenizer
            self.nlp.never_split = special_tokens
thomwolf's avatar
logging  
thomwolf committed
172
        logger.info("Special tokens {}".format(self.special_tokens))
thomwolf's avatar
thomwolf committed
173
174

    def bpe(self, token):
175
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
thomwolf's avatar
thomwolf committed
176
177
178
179
180
181
182
183
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
184
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
thomwolf's avatar
thomwolf committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

thomwolf's avatar
thomwolf committed
217
    def tokenize(self, text):
thomwolf's avatar
thomwolf committed
218
        """ Tokenize a string. """
thomwolf's avatar
thomwolf committed
219
        split_tokens = []
220
221
222
223
224
225
226
227
228
229
        if self.fix_text is None:
            # Using BERT's BasicTokenizer
            text = self.nlp.tokenize(text)
            for token in text:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])
        else:
            # Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
            text = self.nlp(text_standardize(self.fix_text(text)))
            for token in text:
                split_tokens.extend([t for t in self.bpe(token.text.lower()).split(' ')])
thomwolf's avatar
thomwolf committed
230
231
232
        return split_tokens

    def convert_tokens_to_ids(self, tokens):
thomwolf's avatar
thomwolf committed
233
        """ Converts a sequence of tokens into ids using the vocab. """
thomwolf's avatar
thomwolf committed
234
        ids = []
thomwolf's avatar
thomwolf committed
235
        if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
thomwolf's avatar
logging  
thomwolf committed
236
237
238
239
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.encoder.get(tokens, 0)
thomwolf's avatar
thomwolf committed
240
241
242
243
244
245
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.encoder.get(token, 0))
        if len(ids) > self.max_len:
246
            logger.warning(
thomwolf's avatar
thomwolf committed
247
                "Token indices sequence length is longer than the specified maximum "
248
249
                " sequence length for this OpenAI GPT model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".format(len(ids), self.max_len)
thomwolf's avatar
thomwolf committed
250
251
252
            )
        return ids

thomwolf's avatar
thomwolf committed
253
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
thomwolf's avatar
thomwolf committed
254
255
256
        """Converts a sequence of ids in BPE tokens using the vocab."""
        tokens = []
        for i in ids:
thomwolf's avatar
logging  
thomwolf committed
257
            if i in self.special_tokens_decoder:
thomwolf's avatar
thomwolf committed
258
259
                if not skip_special_tokens:
                    tokens.append(self.special_tokens_decoder[i])
thomwolf's avatar
logging  
thomwolf committed
260
261
            else:
                tokens.append(self.decoder[i])
thomwolf's avatar
thomwolf committed
262
263
        return tokens

thomwolf's avatar
thomwolf committed
264
    def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=False):
thomwolf's avatar
thomwolf committed
265
        """Converts a sequence of ids in a string."""
thomwolf's avatar
thomwolf committed
266
        tokens = self.convert_ids_to_tokens(ids, skip_special_tokens=skip_special_tokens)
thomwolf's avatar
thomwolf committed
267
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
thomwolf committed
268
269
270
271
272
273
        if clean_up_tokenization_spaces:
            out_string = out_string.replace('<unk>', '')
            out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ',').replace(' ,', ','
                    ).replace(" n't", "n't").replace(" 'm", "'m").replace(" 're", "'re").replace(" do not", " don't"
                    ).replace(" 's", "'s").replace(" t ", "'t ").replace(" s ", "'s ").replace(" m ", "'m "
                    ).replace(" 've", "'ve")
thomwolf's avatar
thomwolf committed
274
        return out_string
275
276

    def save_vocabulary(self, vocab_path):
277
278
279
280
        """Save the tokenizer vocabulary and merge files to a directory."""
        if not os.path.isdir(vocab_path):
            logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
            return
281
282
        vocab_file = os.path.join(vocab_path, VOCAB_NAME)
        merge_file = os.path.join(vocab_path, MERGES_NAME)
thomwolf's avatar
thomwolf committed
283
284
285
286
287
        special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME)

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

288
289
290
291
292
293
294
295
        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write(u'#version: 0.2\n')
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
thomwolf's avatar
thomwolf committed
296
                writer.write(' '.join(bpe_tokens) + u'\n')
297
                index += 1
thomwolf's avatar
thomwolf committed
298
299
300
301
302
303

        with open(special_tokens_file, 'w', encoding='utf-8') as writer:
            for token in sorted(self.special_tokens.keys(), key=lambda kv: kv[1]):
                writer.write(token + u'\n')

        return vocab_file, merge_file, special_tokens_file