"...lm-evaluation-harness.git" did not exist on "b1619834becb055a3a72e6bfdefcadd22f7fbba0"
tokenization_openai.py 10 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
thomwolf's avatar
thomwolf committed
16
17
18
19
20
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
thomwolf's avatar
thomwolf committed
21
import os
thomwolf's avatar
thomwolf committed
22
import re
thomwolf's avatar
thomwolf committed
23
24
25
import sys
from io import open

thomwolf's avatar
thomwolf committed
26
from tqdm import tqdm
thomwolf's avatar
thomwolf committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

from .file_utils import cached_path

logger = logging.getLogger(__name__)

PRETRAINED_VOCAB_ARCHIVE_MAP = {
    'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json",
}
PRETRAINED_MERGES_ARCHIVE_MAP = {
    'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
    'openai-gpt': 512,
}
VOCAB_NAME = 'vocab.json'
MERGES_NAME = 'merges.txt'
thomwolf's avatar
thomwolf committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

def text_standardize(text):
    """
    fixes some issues the spacy tokenizer had on books corpus
    also does some whitespace standardization
    """
    text = text.replace('—', '-')
    text = text.replace('–', '-')
    text = text.replace('―', '-')
    text = text.replace('…', '...')
    text = text.replace('´', "'")
    text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
    text = re.sub(r'\s*\n\s*', ' \n ', text)
    text = re.sub(r'[^\S\n]+', ' ', text)
    return text.strip()

thomwolf's avatar
thomwolf committed
71
class OpenAIGPTTokenizer(object):
thomwolf's avatar
thomwolf committed
72
73
74
    """
    mostly a wrapper for a public python bpe tokenizer
    """
thomwolf's avatar
thomwolf committed
75
    @classmethod
thomwolf's avatar
thomwolf committed
76
    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
77
78
79
80
        """
        Instantiate a PreTrainedBertModel from a pre-trained model file.
        Download and cache the pre-trained model file if needed.
        """
thomwolf's avatar
thomwolf committed
81
82
83
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
            merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
84
        else:
thomwolf's avatar
thomwolf committed
85
86
            vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
            merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
thomwolf's avatar
thomwolf committed
87
88
89
90
        # redirect to the cache, if necessary
        try:
            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
            resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
91
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
92
93
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
thomwolf's avatar
thomwolf committed
94
95
96
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
                    pretrained_model_name_or_path,
thomwolf's avatar
thomwolf committed
97
                    ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
thomwolf's avatar
thomwolf committed
98
99
                    pretrained_model_name_or_path,
                    vocab_file, merges_file))
thomwolf's avatar
thomwolf committed
100
101
102
103
104
105
106
107
108
            return None
        if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
            logger.info("loading vocabulary file {}".format(vocab_file))
            logger.info("loading merges file {}".format(merges_file))
        else:
            logger.info("loading vocabulary file {} from cache at {}".format(
                vocab_file, resolved_vocab_file))
            logger.info("loading merges file {} from cache at {}".format(
                merges_file, resolved_merges_file))
thomwolf's avatar
thomwolf committed
109
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
thomwolf's avatar
thomwolf committed
110
111
            # if we're using a pretrained model, ensure the tokenizer wont index sequences longer
            # than the number of positional embeddings
thomwolf's avatar
thomwolf committed
112
            max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
113
114
115
116
117
            kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
        # Instantiate tokenizer.
        tokenizer = cls(resolved_vocab_file, resolved_merges_file, *inputs, **kwargs)
        return tokenizer

thomwolf's avatar
thomwolf committed
118
    def __init__(self, vocab_file, merges_file, special_tokens=None, max_len=None):
thomwolf's avatar
thomwolf committed
119
120
121
122
123
        try:
            import ftfy
            import spacy
        except ImportError:
            raise ImportError("Please install ftfy and spacy to use OpenAI GPT tokenizer.")
thomwolf's avatar
thomwolf committed
124

thomwolf's avatar
thomwolf committed
125
        self.max_len = max_len if max_len is not None else int(1e12)
thomwolf's avatar
thomwolf committed
126
        self.nlp = spacy.load('en', disable=['parser', 'tagger', 'ner', 'textcat'])
thomwolf's avatar
thomwolf committed
127
        self.fix_text = ftfy.fix_text
thomwolf's avatar
thomwolf committed
128
        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
thomwolf's avatar
thomwolf committed
129
        self.decoder = {v:k for k,v in self.encoder.items()}
thomwolf's avatar
thomwolf committed
130
        merges = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
thomwolf's avatar
thomwolf committed
131
132
133
        merges = [tuple(merge.split()) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
thomwolf's avatar
logging  
thomwolf committed
134
        self.set_special_tokens(special_tokens)
thomwolf's avatar
thomwolf committed
135

136
137
138
    def __len__(self):
        return len(self.encoder) + len(self.special_tokens)

thomwolf's avatar
thomwolf committed
139
    def set_special_tokens(self, special_tokens):
thomwolf's avatar
thomwolf committed
140
141
142
143
        """ Add a list of additional tokens to the encoder.
            The additional tokens are indexed starting from the last index of the
            current vocabulary in the order of the `special_tokens` list.
        """
thomwolf's avatar
logging  
thomwolf committed
144
145
146
147
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
thomwolf's avatar
thomwolf committed
148
        self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
thomwolf's avatar
logging  
thomwolf committed
149
150
        self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
        logger.info("Special tokens {}".format(self.special_tokens))
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    def bpe(self, token):
        word = tuple(token[:-1]) + ( token[-1] + '</w>',)
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

thomwolf's avatar
thomwolf committed
195
196
197
198
199
200
201
202
203
204
    def tokenize(self, text):
        split_tokens = []
        text = self.nlp(text_standardize(self.fix_text(text)))
        for token in text:
            split_tokens.extend([t for t in self.bpe(token.text.lower()).split(' ')])
        return split_tokens

    def convert_tokens_to_ids(self, tokens):
        """Converts a sequence of tokens into ids using the vocab."""
        ids = []
thomwolf's avatar
thomwolf committed
205
        if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
thomwolf's avatar
logging  
thomwolf committed
206
207
208
209
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.encoder.get(tokens, 0)
thomwolf's avatar
thomwolf committed
210
211
212
213
214
215
216
217
218
219
220
221
222
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.encoder.get(token, 0))
        if len(ids) > self.max_len:
            raise ValueError(
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this BERT model ({} > {}). Running this"
                " sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
            )
        return ids

thomwolf's avatar
thomwolf committed
223
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
thomwolf's avatar
thomwolf committed
224
225
226
        """Converts a sequence of ids in BPE tokens using the vocab."""
        tokens = []
        for i in ids:
thomwolf's avatar
logging  
thomwolf committed
227
            if i in self.special_tokens_decoder:
thomwolf's avatar
thomwolf committed
228
229
                if not skip_special_tokens:
                    tokens.append(self.special_tokens_decoder[i])
thomwolf's avatar
logging  
thomwolf committed
230
231
            else:
                tokens.append(self.decoder[i])
thomwolf's avatar
thomwolf committed
232
233
        return tokens

thomwolf's avatar
thomwolf committed
234
    def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=False):
thomwolf's avatar
thomwolf committed
235
        """Converts a sequence of ids in a string."""
thomwolf's avatar
thomwolf committed
236
        tokens = self.convert_ids_to_tokens(ids, skip_special_tokens=skip_special_tokens)
thomwolf's avatar
thomwolf committed
237
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
thomwolf committed
238
239
240
241
242
243
        if clean_up_tokenization_spaces:
            out_string = out_string.replace('<unk>', '')
            out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ',').replace(' ,', ','
                    ).replace(" n't", "n't").replace(" 'm", "'m").replace(" 're", "'re").replace(" do not", " don't"
                    ).replace(" 's", "'s").replace(" t ", "'t ").replace(" s ", "'s ").replace(" m ", "'m "
                    ).replace(" 've", "'ve")
thomwolf's avatar
thomwolf committed
244
        return out_string