tokenization_openai.py 12.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
thomwolf's avatar
thomwolf committed
16
17
18
19
20
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
thomwolf's avatar
thomwolf committed
21
import os
thomwolf's avatar
thomwolf committed
22
import re
thomwolf's avatar
thomwolf committed
23
24
25
import sys
from io import open

thomwolf's avatar
thomwolf committed
26
from tqdm import tqdm
thomwolf's avatar
thomwolf committed
27
28

from .file_utils import cached_path
29
from .tokenization import BasicTokenizer
thomwolf's avatar
thomwolf committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43

logger = logging.getLogger(__name__)

PRETRAINED_VOCAB_ARCHIVE_MAP = {
    'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json",
}
PRETRAINED_MERGES_ARCHIVE_MAP = {
    'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
    'openai-gpt': 512,
}
VOCAB_NAME = 'vocab.json'
MERGES_NAME = 'merges.txt'
thomwolf's avatar
thomwolf committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

def text_standardize(text):
    """
    fixes some issues the spacy tokenizer had on books corpus
    also does some whitespace standardization
    """
    text = text.replace('—', '-')
    text = text.replace('–', '-')
    text = text.replace('―', '-')
    text = text.replace('…', '...')
    text = text.replace('´', "'")
    text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
    text = re.sub(r'\s*\n\s*', ' \n ', text)
    text = re.sub(r'[^\S\n]+', ' ', text)
    return text.strip()

thomwolf's avatar
thomwolf committed
72
class OpenAIGPTTokenizer(object):
thomwolf's avatar
thomwolf committed
73
    """
74
75
    BPE tokenizer. Peculiarities:
        - lower case all inputs
76
77
78
        - uses SpaCy tokenizer and ftfy for pre-BPE tokenization if they are installed, fallback to BERT's BasicTokenizer if not.
        - argument special_tokens and function set_special_tokens:
            can be used to add additional symbols (ex: "__classify__") to a vocabulary.
thomwolf's avatar
thomwolf committed
79
    """
thomwolf's avatar
thomwolf committed
80
    @classmethod
thomwolf's avatar
thomwolf committed
81
    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
82
83
84
85
        """
        Instantiate a PreTrainedBertModel from a pre-trained model file.
        Download and cache the pre-trained model file if needed.
        """
thomwolf's avatar
thomwolf committed
86
87
88
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
            merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
89
        else:
thomwolf's avatar
thomwolf committed
90
91
            vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
            merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
thomwolf's avatar
thomwolf committed
92
93
94
95
        # redirect to the cache, if necessary
        try:
            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
            resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
96
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
97
98
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
thomwolf's avatar
thomwolf committed
99
100
101
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
                    pretrained_model_name_or_path,
thomwolf's avatar
thomwolf committed
102
                    ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
thomwolf's avatar
thomwolf committed
103
104
                    pretrained_model_name_or_path,
                    vocab_file, merges_file))
thomwolf's avatar
thomwolf committed
105
106
107
108
109
110
111
112
113
            return None
        if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
            logger.info("loading vocabulary file {}".format(vocab_file))
            logger.info("loading merges file {}".format(merges_file))
        else:
            logger.info("loading vocabulary file {} from cache at {}".format(
                vocab_file, resolved_vocab_file))
            logger.info("loading merges file {} from cache at {}".format(
                merges_file, resolved_merges_file))
thomwolf's avatar
thomwolf committed
114
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
thomwolf's avatar
thomwolf committed
115
116
            # if we're using a pretrained model, ensure the tokenizer wont index sequences longer
            # than the number of positional embeddings
thomwolf's avatar
thomwolf committed
117
            max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
118
119
120
121
122
            kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
        # Instantiate tokenizer.
        tokenizer = cls(resolved_vocab_file, resolved_merges_file, *inputs, **kwargs)
        return tokenizer

thomwolf's avatar
thomwolf committed
123
    def __init__(self, vocab_file, merges_file, special_tokens=None, max_len=None):
thomwolf's avatar
thomwolf committed
124
125
126
        try:
            import ftfy
            import spacy
127
128
            self.nlp = spacy.load('en', disable=['parser', 'tagger', 'ner', 'textcat'])
            self.fix_text = ftfy.fix_text
thomwolf's avatar
thomwolf committed
129
        except ImportError:
130
131
132
133
            logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.")
            self.nlp = BasicTokenizer(do_lower_case=True,
                                      never_split=special_tokens if special_tokens is not None else [])
            self.fix_text = None
thomwolf's avatar
thomwolf committed
134

thomwolf's avatar
thomwolf committed
135
        self.max_len = max_len if max_len is not None else int(1e12)
thomwolf's avatar
thomwolf committed
136
        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
thomwolf's avatar
thomwolf committed
137
        self.decoder = {v:k for k,v in self.encoder.items()}
thomwolf's avatar
thomwolf committed
138
        merges = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
thomwolf's avatar
thomwolf committed
139
140
141
        merges = [tuple(merge.split()) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
thomwolf's avatar
logging  
thomwolf committed
142
        self.set_special_tokens(special_tokens)
thomwolf's avatar
thomwolf committed
143

144
145
146
    def __len__(self):
        return len(self.encoder) + len(self.special_tokens)

thomwolf's avatar
thomwolf committed
147
    def set_special_tokens(self, special_tokens):
thomwolf's avatar
thomwolf committed
148
149
150
151
        """ Add a list of additional tokens to the encoder.
            The additional tokens are indexed starting from the last index of the
            current vocabulary in the order of the `special_tokens` list.
        """
thomwolf's avatar
logging  
thomwolf committed
152
153
154
155
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
thomwolf's avatar
thomwolf committed
156
        self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
thomwolf's avatar
logging  
thomwolf committed
157
        self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
158
159
160
        if self.fix_text is None:
            # Using BERT's BasicTokenizer: we can update the tokenizer
            self.nlp.never_split = special_tokens
thomwolf's avatar
logging  
thomwolf committed
161
        logger.info("Special tokens {}".format(self.special_tokens))
thomwolf's avatar
thomwolf committed
162
163

    def bpe(self, token):
164
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
thomwolf's avatar
thomwolf committed
165
166
167
168
169
170
171
172
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
173
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
thomwolf's avatar
thomwolf committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

thomwolf's avatar
thomwolf committed
206
    def tokenize(self, text):
thomwolf's avatar
thomwolf committed
207
        """ Tokenize a string. """
thomwolf's avatar
thomwolf committed
208
        split_tokens = []
209
210
211
212
213
214
215
216
217
218
        if self.fix_text is None:
            # Using BERT's BasicTokenizer
            text = self.nlp.tokenize(text)
            for token in text:
                split_tokens.extend([t for t in self.bpe(token).split(' ')])
        else:
            # Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
            text = self.nlp(text_standardize(self.fix_text(text)))
            for token in text:
                split_tokens.extend([t for t in self.bpe(token.text.lower()).split(' ')])
thomwolf's avatar
thomwolf committed
219
220
221
        return split_tokens

    def convert_tokens_to_ids(self, tokens):
thomwolf's avatar
thomwolf committed
222
        """ Converts a sequence of tokens into ids using the vocab. """
thomwolf's avatar
thomwolf committed
223
        ids = []
thomwolf's avatar
thomwolf committed
224
        if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
thomwolf's avatar
logging  
thomwolf committed
225
226
227
228
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.encoder.get(tokens, 0)
thomwolf's avatar
thomwolf committed
229
230
231
232
233
234
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.encoder.get(token, 0))
        if len(ids) > self.max_len:
235
            logger.warning(
thomwolf's avatar
thomwolf committed
236
                "Token indices sequence length is longer than the specified maximum "
237
238
                " sequence length for this OpenAI GPT model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".format(len(ids), self.max_len)
thomwolf's avatar
thomwolf committed
239
240
241
            )
        return ids

thomwolf's avatar
thomwolf committed
242
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
thomwolf's avatar
thomwolf committed
243
244
245
        """Converts a sequence of ids in BPE tokens using the vocab."""
        tokens = []
        for i in ids:
thomwolf's avatar
logging  
thomwolf committed
246
            if i in self.special_tokens_decoder:
thomwolf's avatar
thomwolf committed
247
248
                if not skip_special_tokens:
                    tokens.append(self.special_tokens_decoder[i])
thomwolf's avatar
logging  
thomwolf committed
249
250
            else:
                tokens.append(self.decoder[i])
thomwolf's avatar
thomwolf committed
251
252
        return tokens

thomwolf's avatar
thomwolf committed
253
    def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=False):
thomwolf's avatar
thomwolf committed
254
        """Converts a sequence of ids in a string."""
thomwolf's avatar
thomwolf committed
255
        tokens = self.convert_ids_to_tokens(ids, skip_special_tokens=skip_special_tokens)
thomwolf's avatar
thomwolf committed
256
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
thomwolf committed
257
258
259
260
261
262
        if clean_up_tokenization_spaces:
            out_string = out_string.replace('<unk>', '')
            out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ',').replace(' ,', ','
                    ).replace(" n't", "n't").replace(" 'm", "'m").replace(" 're", "'re").replace(" do not", " don't"
                    ).replace(" 's", "'s").replace(" t ", "'t ").replace(" s ", "'s ").replace(" m ", "'m "
                    ).replace(" 've", "'ve")
thomwolf's avatar
thomwolf committed
263
        return out_string
264
265

    def save_vocabulary(self, vocab_path):
266
267
268
269
        """Save the tokenizer vocabulary and merge files to a directory."""
        if not os.path.isdir(vocab_path):
            logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
            return
270
271
272
273
274
275
276
277
278
279
280
281
282
        vocab_file = os.path.join(vocab_path, VOCAB_NAME)
        merge_file = os.path.join(vocab_path, MERGES_NAME)
        json.dump(self.encoder, vocab_file)
        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write(u'#version: 0.2\n')
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
                writer.write(bpe_tokens + u'\n')
                index += 1
283
        return vocab_file, merge_file