run_clm.py 22.1 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=causal-lm
"""
22
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
26
27
28
29
30

import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

31
import datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from datasets import load_dataset

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
)
47
from transformers.testing_utils import CaptureLogger
48
from transformers.trainer_utils import get_last_checkpoint
49
from transformers.utils import check_min_version
50
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
51
52


53
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
54
check_min_version("4.11.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
55

56
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
57

Sylvain Gugger's avatar
Sylvain Gugger committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
logger = logging.getLogger(__name__)


MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
82
83
84
85
86
87
88
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
            "help": "Override some existing default config settings when a model is trained from scratch. Example: "
            "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
91
92
93
94
95
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
96
97
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Sylvain Gugger's avatar
Sylvain Gugger committed
98
99
100
101
102
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
103
104
105
106
107
108
109
110
111
112
113
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
114

115
116
117
118
119
120
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
139
140
141
142
143
144
145
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
146
    max_eval_samples: Optional[int] = field(
147
148
        default=None,
        metadata={
149
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
150
151
152
153
            "value if set."
        },
    )

154
155
    block_size: Optional[int] = field(
        default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
156
        metadata={
157
158
            "help": "Optional input sequence length after tokenization. "
            "The training dataset will be truncated in block of this size for training. "
Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
161
162
163
164
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
165
166
167
168
169
170
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
173
174
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
175
    keep_linebreaks: bool = field(
176
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
177
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
206
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
207
        datefmt="%m/%d/%Y %H:%M:%S",
208
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
209
    )
210
211
212
213
214
215
216

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
217
218
219
220
221
222

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
223
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
240
241
242
243
244
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
245
    # (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
246
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
247
248
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
Sylvain Gugger's avatar
Sylvain Gugger committed
249
250
251
252
253
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
254
255
256
257
258
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
259
260
261
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
262
                cache_dir=model_args.cache_dir,
263
            )
264
            raw_datasets["train"] = load_dataset(
265
266
267
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
268
                cache_dir=model_args.cache_dir,
269
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
270
271
    else:
        data_files = {}
272
        dataset_args = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
273
274
275
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
276
            data_files["validation"] = data_args.validation_file
277
278
279
280
281
        extension = (
            data_args.train_file.split(".")[-1]
            if data_args.train_file is not None
            else data_args.validation_file.split(".")[-1]
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
282
283
        if extension == "txt":
            extension = "text"
284
285
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir, **dataset_args)
286
287
288
289
290
291
292
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
293
                **dataset_args,
294
295
296
297
298
299
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
300
                **dataset_args,
301
302
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
303
304
305
306
307
308
309
310
311
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

312
313
314
315
316
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
317
    if model_args.config_name:
318
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
319
    elif model_args.model_name_or_path:
320
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
321
322
323
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
324
325
326
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
Sylvain Gugger's avatar
Sylvain Gugger committed
327

328
329
330
331
332
333
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
334
    if model_args.tokenizer_name:
335
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
336
    elif model_args.model_name_or_path:
337
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
338
339
340
341
342
343
344
345
346
347
348
349
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
350
351
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
352
353
354
        )
    else:
        model = AutoModelForCausalLM.from_config(config)
355
356
        n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
Sylvain Gugger's avatar
Sylvain Gugger committed
357
358
359
360
361
362

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
363
        column_names = raw_datasets["train"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
364
    else:
365
        column_names = raw_datasets["validation"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
366
367
    text_column_name = "text" if "text" in column_names else column_names[0]

368
369
370
    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

Sylvain Gugger's avatar
Sylvain Gugger committed
371
    def tokenize_function(examples):
372
373
374
375
376
377
378
379
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model."
            )
        return output
Sylvain Gugger's avatar
Sylvain Gugger committed
380

381
382
383
384
385
386
387
388
389
    with training_args.main_process_first(desc="dataset map tokenization"):
        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
390

391
    if data_args.block_size is None:
392
        block_size = tokenizer.model_max_length
393
        if block_size > 1024:
394
            logger.warning(
395
396
397
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
398
            block_size = 1024
Sylvain Gugger's avatar
Sylvain Gugger committed
399
    else:
400
        if data_args.block_size > tokenizer.model_max_length:
401
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
402
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
403
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
Sylvain Gugger's avatar
Sylvain Gugger committed
404
            )
405
        block_size = min(data_args.block_size, tokenizer.model_max_length)
Sylvain Gugger's avatar
Sylvain Gugger committed
406
407
408
409
410
411
412
413

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
414
415
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
Sylvain Gugger's avatar
Sylvain Gugger committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
430

431
432
433
434
435
436
437
438
    with training_args.main_process_first(desc="grouping texts together"):
        lm_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
            desc=f"Grouping texts in chunks of {block_size}",
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
439

440
441
442
443
444
445
446
447
448
449
450
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
451
452
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
453

Sylvain Gugger's avatar
Sylvain Gugger committed
454
455
456
457
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
458
459
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
460
461
462
463
464
465
466
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
    )

    # Training
    if training_args.do_train:
467
468
469
470
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
471
472
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
473
474
        trainer.save_model()  # Saves the tokenizer too for easy upload

475
        metrics = train_result.metrics
476

477
478
479
480
481
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

482
483
484
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
485

Sylvain Gugger's avatar
Sylvain Gugger committed
486
487
488
489
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

490
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
491

492
493
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
494
495
496
497
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
498
        metrics["perplexity"] = perplexity
Sylvain Gugger's avatar
Sylvain Gugger committed
499

500
501
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
502

503
504
505
506
507
508
509
510
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
511

512
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
513
        trainer.push_to_hub(**kwargs)
514
515
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
516

Sylvain Gugger's avatar
Sylvain Gugger committed
517
518
519
520
521
522
523
524

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()