modeling_gpt2.py 31.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
import collections
import json
import logging
import math
import os
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

33
34
35
from .modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary
from .configuration_gpt2 import GPT2Config
from .file_utils import add_start_docstrings
thomwolf's avatar
thomwolf committed
36
37
38

logger = logging.getLogger(__name__)

39
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
40
41
                                     "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin",
                                     "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
42

43
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
thomwolf's avatar
thomwolf committed
44
45
46
47
48
49
50
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
Kevin Trebing's avatar
Kevin Trebing committed
51
        logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
52
53
54
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
thomwolf's avatar
thomwolf committed
55
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
thomwolf's avatar
thomwolf committed
56
57
58
59
60
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
61
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
62
63
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
64
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
65
66

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
67
        name = name[6:]  # skip "model/"
thomwolf's avatar
thomwolf committed
68
69
70
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
71
72
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
thomwolf's avatar
thomwolf committed
73
74
75
76
77
78
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
thomwolf's avatar
thomwolf committed
79
80
81
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
82
83
84
85
86
87
88
89
90
91
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
92
        logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
93
94
95
96
97
98
99
100
101
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
102
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
103
        super(Attention, self).__init__()
thomwolf's avatar
thomwolf committed
104
105
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
106
107
108
109
110
111
112
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
113

thomwolf's avatar
thomwolf committed
114
115
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
116
117
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
118
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
119

120
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
121
122
        if len(heads) == 0:
            return
123
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
124
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
125
        for head in heads:
126
127
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
128
129
130
131
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
132

133
134
135
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
136

137
138
139
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)
140
        self.pruned_heads = self.pruned_heads.union(heads)
141
142

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
143
144
145
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
146
147
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
148
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
149
150

        w = nn.Softmax(dim=-1)(w)
151
        w = self.attn_dropout(w)
152
153
154
155
156

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
157
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
158
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
159
160
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
161
162
163
164
165
166
167
168
169
170

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
171
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
172
        else:
thomwolf's avatar
thomwolf committed
173
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
174

175
    def forward(self, x, layer_past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
176
177
178
179
180
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
181
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
182
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
183
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
184
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
185
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
186

thomwolf's avatar
thomwolf committed
187
188
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
189

thomwolf's avatar
thomwolf committed
190
191
        a = self.merge_heads(a)
        a = self.c_proj(a)
192
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
193
194
195

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)
thomwolf's avatar
thomwolf committed
196
197
198
199
200
201
202
203
204


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
205
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
206
207
208
209

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
210
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
211
212
213


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
214
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
215
216
        super(Block, self).__init__()
        nx = config.n_embd
217
        self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
218
        self.attn = Attention(nx, n_ctx, config, scale)
219
        self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
220
221
        self.mlp = MLP(4 * nx, config)

222
223
    def forward(self, x, layer_past=None, head_mask=None):
        output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
224
225
        a = output_attn[0]  # output_attn: a, present, (attentions)

thomwolf's avatar
thomwolf committed
226
        x = x + a
thomwolf's avatar
thomwolf committed
227
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
228
        x = x + m
thomwolf's avatar
thomwolf committed
229
230
231

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)
thomwolf's avatar
thomwolf committed
232
233


234
class GPT2PreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
235
236
237
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
238
    config_class = GPT2Config
239
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
240
241
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"
thomwolf's avatar
thomwolf committed
242

243
244
245
    def __init__(self, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)

246
    def _init_weights(self, module):
thomwolf's avatar
thomwolf committed
247
248
        """ Initialize the weights.
        """
249
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
250
251
252
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
253
254
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
255
        elif isinstance(module, nn.LayerNorm):
thomwolf's avatar
thomwolf committed
256
257
258
259
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


thomwolf's avatar
thomwolf committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
GPT2_START_DOCSTRING = r"""    OpenAI GPT-2 model was proposed in
    `Language Models are Unsupervised Multitask Learners`_
    by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
    It's a causal (unidirectional) transformer pre-trained using  language modeling on a very large
    corpus of ~40 GB of text data.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Language Models are Unsupervised Multitask Learners`:
        https://openai.com/blog/better-language-models/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
thomwolf's avatar
thomwolf committed
276
        config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model.
277
278
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
279
280
"""

thomwolf's avatar
thomwolf committed
281
GPT2_INPUTS_DOCSTRING = r"""    Inputs:
thomwolf's avatar
thomwolf committed
282
283
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
284
285
            GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
thomwolf's avatar
thomwolf committed
286
287
288
289
290
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
291
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
292
293
294
295
296
297
298
299
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
300
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
301
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
302
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
303
304
305
306
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.",
thomwolf's avatar
thomwolf committed
307
                      GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
308
class GPT2Model(GPT2PreTrainedModel):
309
    r"""
thomwolf's avatar
thomwolf committed
310
311
312
313
314
315
316
317
318
319
320
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
321
322
323
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
324
325
326

    Examples::

327
328
329
330
331
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2Model.from_pretrained('gpt2')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
332
333

    """
thomwolf's avatar
thomwolf committed
334
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
335
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
336
337
338
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
339
        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
thomwolf's avatar
thomwolf committed
340
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
341
        self.drop = nn.Dropout(config.embd_pdrop)
342
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
343
        self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
344

345
        self.init_weights()
thomwolf's avatar
thomwolf committed
346

thomwolf's avatar
thomwolf committed
347
348
    def _resize_token_embeddings(self, new_num_tokens):
        self.wte = self._get_resized_embeddings(self.wte, new_num_tokens)
thomwolf's avatar
thomwolf committed
349
        return self.wte
thomwolf's avatar
thomwolf committed
350

thomwolf's avatar
thomwolf committed
351
    def _prune_heads(self, heads_to_prune):
352
353
354
355
356
357
358
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
359
        if past is None:
thomwolf's avatar
thomwolf committed
360
            past_length = 0
thomwolf's avatar
thomwolf committed
361
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
362
        else:
thomwolf's avatar
thomwolf committed
363
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
364
365
366
367
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

368
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
369
        # 1.0 in head_mask indicate we keep the head
370
        # attention_probs has shape bsz x n_heads x N x N
371
        # head_mask has shape n_layer x batch x n_heads x N x N
372
373
        if head_mask is not None:
            if head_mask.dim() == 1:
374
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
375
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
376
            elif head_mask.dim() == 2:
377
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
378
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
379
380
        else:
            head_mask = [None] * self.config.n_layer
381

thomwolf's avatar
thomwolf committed
382
383
384
385
386
387
388
389
390
391
392
393
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
394
395
        hidden_states = self.drop(hidden_states)

396
397
        output_shape = input_shape + (hidden_states.size(-1),)

398
        presents = ()
thomwolf's avatar
thomwolf committed
399
        all_attentions = []
400
        all_hidden_states = ()
401
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
thomwolf's avatar
thomwolf committed
402
            if self.output_hidden_states:
403
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
404

405
            outputs = block(hidden_states, layer_past, head_mask[i])
thomwolf's avatar
thomwolf committed
406
            hidden_states, present = outputs[:2]
407
            presents = presents + (present,)
thomwolf's avatar
thomwolf committed
408
409
410
411

            if self.output_attentions:
                all_attentions.append(outputs[2])

thomwolf's avatar
thomwolf committed
412
        hidden_states = self.ln_f(hidden_states)
413

thomwolf's avatar
thomwolf committed
414
415
416
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
417
            all_hidden_states = all_hidden_states + (hidden_states,)
thomwolf's avatar
thomwolf committed
418

419
        outputs = (hidden_states, presents)
thomwolf's avatar
thomwolf committed
420
        if self.output_hidden_states:
421
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
422
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
423
424
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
425
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
426
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
427
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
428
429


thomwolf's avatar
thomwolf committed
430
@add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top
thomwolf's avatar
thomwolf committed
431
(linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
432
class GPT2LMHeadModel(GPT2PreTrainedModel):
433
    r"""
thomwolf's avatar
thomwolf committed
434
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
435
436
437
438
439
440
441
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
442
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
thomwolf's avatar
thomwolf committed
443
444
445
446
447
448
449
450
451
452
453
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
454
455
456
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
457
458
459

    Examples::

thomwolf's avatar
thomwolf committed
460
461
462
        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

463
464
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2LMHeadModel.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
465

466
467
468
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]
thomwolf's avatar
thomwolf committed
469
470

    """
thomwolf's avatar
thomwolf committed
471
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
472
        super(GPT2LMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
473
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
474
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
475

476
        self.init_weights()
thomwolf's avatar
thomwolf committed
477
        self.tie_weights()
478

thomwolf's avatar
thomwolf committed
479
480
481
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
thomwolf's avatar
thomwolf committed
482
        """
thomwolf's avatar
thomwolf committed
483
484
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)
thomwolf's avatar
thomwolf committed
485

thomwolf's avatar
thomwolf committed
486
    def forward(self, input_ids, position_ids=None, token_type_ids=None, labels=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
487
488
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               past=past, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
489
        hidden_states = transformer_outputs[0]
490

thomwolf's avatar
thomwolf committed
491
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
492

493
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
494
        if labels is not None:
495
            # Shift so that tokens < n predict n
496
            shift_logits = lm_logits[..., :-1, :].contiguous()
thomwolf's avatar
thomwolf committed
497
            shift_labels = labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
498
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
499
            loss_fct = CrossEntropyLoss(ignore_index=-1)
500
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
501
                            shift_labels.view(-1))
502
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
503
504

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
505
506


thomwolf's avatar
thomwolf committed
507
508
509
@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
Julien Chaumond's avatar
Julien Chaumond committed
510
the classification head takes as input the input of a specified classification token index in the input sequence).
thomwolf's avatar
thomwolf committed
511
""", GPT2_START_DOCSTRING)
thomwolf's avatar
thomwolf committed
512
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
513
    r"""    Inputs:
thomwolf's avatar
thomwolf committed
514
515
516
517
518
519
520
521
522
523
524
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
525
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
526
527
528
529
530
531
532
533
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
534
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
535
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
536
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
537
538
539
540
541
542
543
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
544
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
thomwolf's avatar
thomwolf committed
545
546
547
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
thomwolf's avatar
thomwolf committed
548

thomwolf's avatar
thomwolf committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
566
567
568
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
569
570
571

    Examples::

572
573
574
        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
        
575
576
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
577
578
579
580
581
582
        
        # Add a [CLS] to the vocabulary (we should train it also!)
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size
        print(tokenizer.cls_token_id, len(tokenizer))  # The newly token the last token of the vocabulary
        
thomwolf's avatar
thomwolf committed
583
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
thomwolf's avatar
thomwolf committed
584
585
586
587
588
589
590
        encoded_choices = [tokenizer.encode(s) for s in choices]
        cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

        input_ids = torch.tensor(encoded_choices).unsqueeze(0)  # Batch size: 1, number of choices: 2
        mc_token_ids = torch.tensor([cls_token_location])  # Batch size: 1

        outputs = model(input_ids, mc_token_ids=mc_token_ids)
591
        lm_prediction_scores, mc_prediction_scores = outputs[:2]
thomwolf's avatar
thomwolf committed
592
593

    """
thomwolf's avatar
thomwolf committed
594
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
595
        super(GPT2DoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
596
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
597
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
598
        self.multiple_choice_head = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
599

600
        self.init_weights()
601
        self.tie_weights()
thomwolf's avatar
thomwolf committed
602

thomwolf's avatar
thomwolf committed
603
604
605
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
606
        """
thomwolf's avatar
thomwolf committed
607
608
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)
thomwolf's avatar
thomwolf committed
609

thomwolf's avatar
thomwolf committed
610
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
611
                position_ids=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
612
613
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               past=past, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
614
        hidden_states = transformer_outputs[0]
615

thomwolf's avatar
thomwolf committed
616
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
617
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
618

619
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
620
621
622
623
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
624
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
625
        if lm_labels is not None:
626
627
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
628
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
629
630
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
631
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
632
633

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)