test_modeling_tf_albert.py 13.4 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Lysandre's avatar
Lysandre committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Lysandre's avatar
Lysandre committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import AlbertConfig, is_tf_available
20
from transformers.models.auto import get_values
21
from transformers.testing_utils import require_tf, slow
Lysandre's avatar
Lysandre committed
22

23
from .test_configuration_common import ConfigTester
24
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
Lysandre's avatar
Lysandre committed
25
26
27


if is_tf_available():
28
    import tensorflow as tf
29

Julien Plu's avatar
Julien Plu committed
30
    from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING
Sylvain Gugger's avatar
Sylvain Gugger committed
31
    from transformers.models.albert.modeling_tf_albert import (
32
        TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
33
        TFAlbertForMaskedLM,
34
        TFAlbertForMultipleChoice,
35
        TFAlbertForPreTraining,
36
        TFAlbertForQuestionAnswering,
37
        TFAlbertForSequenceClassification,
Lysandre Debut's avatar
Lysandre Debut committed
38
        TFAlbertForTokenClassification,
39
        TFAlbertModel,
40
    )
Lysandre's avatar
Lysandre committed
41
42


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
class TFAlbertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        embedding_size=16,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.embedding_size = 16
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = AlbertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
Lysandre Debut's avatar
Lysandre Debut committed
116
            embedding_size=self.embedding_size,
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_albert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertModel(config=config)
        # inputs = {'input_ids': input_ids,
        #           'attention_mask': input_mask,
        #           'token_type_ids': token_type_ids}
        # sequence_output, pooled_output = model(**inputs)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
139
        result = model(inputs)
140
141

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
142
        result = model(inputs)
143

Sylvain Gugger's avatar
Sylvain Gugger committed
144
        result = model(input_ids)
145

146
147
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
148
149
150
151
152
153
154

    def create_and_check_albert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFAlbertForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
155
        result = model(inputs)
156
157
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, self.num_labels))
158
159
160
161
162
163

    def create_and_check_albert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
164
        result = model(inputs)
165
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
166
167
168
169
170
171
172

    def create_and_check_albert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFAlbertForSequenceClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
173
        result = model(inputs)
174
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
175
176
177
178
179
180

    def create_and_check_albert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
181
        result = model(inputs)
182
183
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    def create_and_check_albert_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFAlbertForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
        result = model(inputs)
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])

Lysandre Debut's avatar
Lysandre Debut committed
201
202
203
204
205
206
207
208
209
210
211
212
213
    def create_and_check_albert_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFAlbertForTokenClassification(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
        result = model(inputs)
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


229
@require_tf
230
class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
Lysandre's avatar
Lysandre committed
231
232

    all_model_classes = (
233
234
235
236
237
238
        (
            TFAlbertModel,
            TFAlbertForPreTraining,
            TFAlbertForMaskedLM,
            TFAlbertForSequenceClassification,
            TFAlbertForQuestionAnswering,
Lysandre Debut's avatar
Lysandre Debut committed
239
240
            TFAlbertForTokenClassification,
            TFAlbertForMultipleChoice,
241
        )
242
243
        if is_tf_available()
        else ()
244
    )
245
    test_head_masking = False
246
    test_onnx = False
Lysandre's avatar
Lysandre committed
247

Julien Plu's avatar
Julien Plu committed
248
249
250
251
252
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
253
            if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING):
Julien Plu's avatar
Julien Plu committed
254
255
256
257
                inputs_dict["sentence_order_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)

        return inputs_dict

Lysandre's avatar
Lysandre committed
258
    def setUp(self):
259
        self.model_tester = TFAlbertModelTester(self)
260
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
Lysandre's avatar
Lysandre committed
261
262
263
264
265
266
267
268

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_albert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_model(*config_and_inputs)

269
270
271
272
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs)

Lysandre's avatar
Lysandre committed
273
274
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
275
        self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
Lysandre's avatar
Lysandre committed
276

277
278
279
280
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_multiple_choice(*config_and_inputs)

Lysandre's avatar
Lysandre committed
281
282
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
283
        self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
284

285
286
287
288
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)

289
290
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
291
        list_lm_models = [TFAlbertForPreTraining, TFAlbertForMaskedLM]
292
293
294
295

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
296
297
298
299
300
301
302
303
304
305
306
307
308

            if model_class in list_lm_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
309

310
    @slow
Lysandre's avatar
Lysandre committed
311
    def test_model_from_pretrained(self):
312
        for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
313
            model = TFAlbertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
314
            self.assertIsNotNone(model)
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337


@require_tf
class TFAlbertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFAlbertForPreTraining.from_pretrained("albert-base-v2")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 30000]
        self.assertEqual(output.shape, expected_shape)

        expected_slice = tf.constant(
            [
                [
                    [4.595668, 0.74462754, -1.818147],
                    [4.5954347, 0.7454184, -1.8188258],
                    [4.5954905, 0.7448235, -1.8182316],
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)