test_modeling_tf_albert.py 8.92 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15
from __future__ import absolute_import, division, print_function
Lysandre's avatar
Lysandre committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import AlbertConfig, is_tf_available
Lysandre's avatar
Lysandre committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import CACHE_DIR, require_tf, slow
Lysandre's avatar
Lysandre committed
24
25
26


if is_tf_available():
27
28
29
30
31
32
    from transformers.modeling_tf_albert import (
        TFAlbertModel,
        TFAlbertForMaskedLM,
        TFAlbertForSequenceClassification,
        TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
Lysandre's avatar
Lysandre committed
33
34


35
@require_tf
36
class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
Lysandre's avatar
Lysandre committed
37
38

    all_model_classes = (
39
40
        (TFAlbertModel, TFAlbertForMaskedLM, TFAlbertForSequenceClassification) if is_tf_available() else ()
    )
Lysandre's avatar
Lysandre committed
41
42

    class TFAlbertModelTester(object):
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            embedding_size=16,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
Lysandre's avatar
Lysandre committed
69
70
71
72
73
74
75
76
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
Lysandre's avatar
Lysandre committed
77
            self.embedding_size = embedding_size
Lysandre's avatar
Lysandre committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
94
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
Lysandre's avatar
Lysandre committed
95
96
97

            input_mask = None
            if self.use_input_mask:
98
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
Lysandre's avatar
Lysandre committed
99
100
101

            token_type_ids = None
            if self.use_token_type_ids:
102
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
Lysandre's avatar
Lysandre committed
103
104
105
106
107

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
108
109
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
Lysandre's avatar
Lysandre committed
110
111
112
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = AlbertConfig(
thomwolf's avatar
thomwolf committed
113
                vocab_size=self.vocab_size,
Lysandre's avatar
Lysandre committed
114
115
116
117
118
119
120
121
122
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
123
124
                initializer_range=self.initializer_range,
            )
Lysandre's avatar
Lysandre committed
125
126
127

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

128
129
130
        def create_and_check_albert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
131
132
133
134
135
            model = TFAlbertModel(config=config)
            # inputs = {'input_ids': input_ids,
            #           'attention_mask': input_mask,
            #           'token_type_ids': token_type_ids}
            # sequence_output, pooled_output = model(**inputs)
136
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Lysandre's avatar
Lysandre committed
137
138
139
140
141
142
143
144
145
146
147
148
            sequence_output, pooled_output = model(inputs)

            inputs = [input_ids, input_mask]
            sequence_output, pooled_output = model(inputs)

            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output.numpy(),
                "pooled_output": pooled_output.numpy(),
            }
            self.parent.assertListEqual(
149
150
151
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
            self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])
Lysandre's avatar
Lysandre committed
152

153
154
155
        def create_and_check_albert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
156
            model = TFAlbertForMaskedLM(config=config)
157
158
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (prediction_scores,) = model(inputs)
Lysandre's avatar
Lysandre committed
159
160
161
162
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
163
164
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
Lysandre's avatar
Lysandre committed
165

166
167
168
        def create_and_check_albert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
169
170
            config.num_labels = self.num_labels
            model = TFAlbertForSequenceClassification(config=config)
171
172
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
Lysandre's avatar
Lysandre committed
173
174
175
            result = {
                "logits": logits.numpy(),
            }
176
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
Lysandre's avatar
Lysandre committed
177
178
179

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
180
181
182
183
184
185
186
187
188
189
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
Lysandre's avatar
Lysandre committed
190
191
192
193
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFAlbertModelTest.TFAlbertModelTester(self)
194
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
Lysandre's avatar
Lysandre committed
195
196
197
198
199
200
201
202
203
204

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_albert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
205
        self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
Lysandre's avatar
Lysandre committed
206
207
208

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
209
        self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
210

211
    @slow
Lysandre's avatar
Lysandre committed
212
    def test_model_from_pretrained(self):
Aymeric Augustin's avatar
Aymeric Augustin committed
213
        for model_name in list(TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
214
            model = TFAlbertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
Lysandre's avatar
Lysandre committed
215
            self.assertIsNotNone(model)