test_modeling_tf_albert.py 10.6 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Lysandre's avatar
Lysandre committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import AlbertConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
Lysandre's avatar
Lysandre committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
Lysandre's avatar
Lysandre committed
24
25
26


if is_tf_available():
27
    import tensorflow as tf
28
29
    from transformers.modeling_tf_albert import (
        TFAlbertModel,
30
        TFAlbertForPreTraining,
31
        TFAlbertForMaskedLM,
32
        TFAlbertForMultipleChoice,
33
        TFAlbertForSequenceClassification,
34
        TFAlbertForQuestionAnswering,
35
        TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
36
    )
Lysandre's avatar
Lysandre committed
37
38


39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
class TFAlbertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        embedding_size=16,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.embedding_size = 16
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = AlbertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
121
            return_dict=True,
122
123
124
125
126
127
128
129
130
131
132
133
134
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_albert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertModel(config=config)
        # inputs = {'input_ids': input_ids,
        #           'attention_mask': input_mask,
        #           'token_type_ids': token_type_ids}
        # sequence_output, pooled_output = model(**inputs)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
135
        result = model(inputs)
136
137

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
138
        result = model(inputs)
139

Sylvain Gugger's avatar
Sylvain Gugger committed
140
        result = model(input_ids)
141
142

        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
143
            list(result["last_hidden_state"].shape), [self.batch_size, self.seq_length, self.hidden_size]
144
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
145
        self.parent.assertListEqual(list(result["pooler_output"].shape), [self.batch_size, self.hidden_size])
146
147
148
149
150
151
152

    def create_and_check_albert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFAlbertForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
153
        result = model(inputs)
154
        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
155
            list(result["prediction_logits"].shape), [self.batch_size, self.seq_length, self.vocab_size]
156
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
157
        self.parent.assertListEqual(list(result["sop_logits"].shape), [self.batch_size, self.num_labels])
158
159
160
161
162
163

    def create_and_check_albert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
        result = model(inputs)
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size])
166
167
168
169
170
171
172

    def create_and_check_albert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFAlbertForSequenceClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
173
        result = model(inputs)
174
175
176
177
178
179
180
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])

    def create_and_check_albert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
181
        result = model(inputs)
182
183
184
        self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    def create_and_check_albert_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFAlbertForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
        result = model(inputs)
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


216
@require_tf
217
class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
Lysandre's avatar
Lysandre committed
218
219

    all_model_classes = (
220
221
222
223
224
225
226
        (
            TFAlbertModel,
            TFAlbertForPreTraining,
            TFAlbertForMaskedLM,
            TFAlbertForSequenceClassification,
            TFAlbertForQuestionAnswering,
        )
227
228
        if is_tf_available()
        else ()
229
    )
Lysandre's avatar
Lysandre committed
230
231

    def setUp(self):
232
        self.model_tester = TFAlbertModelTester(self)
233
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
Lysandre's avatar
Lysandre committed
234
235
236
237
238
239
240
241

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_albert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_model(*config_and_inputs)

242
243
244
245
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs)

Lysandre's avatar
Lysandre committed
246
247
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
248
        self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
Lysandre's avatar
Lysandre committed
249

250
251
252
253
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_multiple_choice(*config_and_inputs)

Lysandre's avatar
Lysandre committed
254
255
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
256
        self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
257

258
259
260
261
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)

262
    @slow
Lysandre's avatar
Lysandre committed
263
    def test_model_from_pretrained(self):
264
        for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
265
            model = TFAlbertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
266
            self.assertIsNotNone(model)