test_modeling_tf_albert.py 9.46 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Lysandre's avatar
Lysandre committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import AlbertConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
Lysandre's avatar
Lysandre committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
Lysandre's avatar
Lysandre committed
24
25
26


if is_tf_available():
27
28
    from transformers.modeling_tf_albert import (
        TFAlbertModel,
29
        TFAlbertForPreTraining,
30
31
        TFAlbertForMaskedLM,
        TFAlbertForSequenceClassification,
32
        TFAlbertForQuestionAnswering,
33
        TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
34
    )
Lysandre's avatar
Lysandre committed
35
36


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
class TFAlbertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        embedding_size=16,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.embedding_size = 16
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = AlbertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
119
            return_dict=True,
120
121
122
123
124
125
126
127
128
129
130
131
132
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_albert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertModel(config=config)
        # inputs = {'input_ids': input_ids,
        #           'attention_mask': input_mask,
        #           'token_type_ids': token_type_ids}
        # sequence_output, pooled_output = model(**inputs)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
133
        result = model(inputs)
134
135

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
136
        result = model(inputs)
137

Sylvain Gugger's avatar
Sylvain Gugger committed
138
        result = model(input_ids)
139
140

        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
141
            list(result["last_hidden_state"].shape), [self.batch_size, self.seq_length, self.hidden_size]
142
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
143
        self.parent.assertListEqual(list(result["pooler_output"].shape), [self.batch_size, self.hidden_size])
144
145
146
147
148
149
150

    def create_and_check_albert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFAlbertForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
151
        result = model(inputs)
152
        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
153
            list(result["prediction_logits"].shape), [self.batch_size, self.seq_length, self.vocab_size]
154
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
155
        self.parent.assertListEqual(list(result["sop_logits"].shape), [self.batch_size, self.num_labels])
156
157
158
159
160
161

    def create_and_check_albert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
162
163
        result = model(inputs)
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size])
164
165
166
167
168
169
170

    def create_and_check_albert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFAlbertForSequenceClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
171
        result = model(inputs)
172
173
174
175
176
177
178
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])

    def create_and_check_albert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
179
        result = model(inputs)
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


198
@require_tf
199
class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
Lysandre's avatar
Lysandre committed
200
201

    all_model_classes = (
202
203
204
205
206
207
208
        (
            TFAlbertModel,
            TFAlbertForPreTraining,
            TFAlbertForMaskedLM,
            TFAlbertForSequenceClassification,
            TFAlbertForQuestionAnswering,
        )
209
210
        if is_tf_available()
        else ()
211
    )
Lysandre's avatar
Lysandre committed
212
213

    def setUp(self):
214
        self.model_tester = TFAlbertModelTester(self)
215
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
Lysandre's avatar
Lysandre committed
216
217
218
219
220
221
222
223

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_albert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_model(*config_and_inputs)

224
225
226
227
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs)

Lysandre's avatar
Lysandre committed
228
229
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
230
        self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
Lysandre's avatar
Lysandre committed
231
232
233

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
234
        self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
235

236
237
238
239
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)

240
    @slow
Lysandre's avatar
Lysandre committed
241
    def test_model_from_pretrained(self):
242
        for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
243
            model = TFAlbertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
244
            self.assertIsNotNone(model)