"tests/vscode:/vscode.git/clone" did not exist on "44e3e3fb4930298f092f336c2b7add3ebf051928"
test_pipelines_common.py 22.7 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
17
import importlib
import logging
18
import random
19
import string
20
import unittest
21
from abc import abstractmethod
22
from functools import lru_cache
23
24
from unittest import skipIf

25
26
27
28
29
from transformers import (
    FEATURE_EXTRACTOR_MAPPING,
    TOKENIZER_MAPPING,
    AutoFeatureExtractor,
    AutoTokenizer,
30
    DistilBertForSequenceClassification,
31
32
    IBertConfig,
    RobertaConfig,
33
    TextClassificationPipeline,
34
35
    pipeline,
)
36
from transformers.pipelines import get_task
37
from transformers.pipelines.base import _pad
38
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch
39
40


41
42
43
44
logger = logging.getLogger(__name__)


def get_checkpoint_from_architecture(architecture):
45
46
47
48
49
    try:
        module = importlib.import_module(architecture.__module__)
    except ImportError:
        logger.error(f"Ignoring architecture {architecture}")
        return
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

    if hasattr(module, "_CHECKPOINT_FOR_DOC"):
        return module._CHECKPOINT_FOR_DOC
    else:
        logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}")


def get_tiny_config_from_class(configuration_class):
    if "OpenAIGPT" in configuration_class.__name__:
        # This is the only file that is inconsistent with the naming scheme.
        # Will rename this file if we decide this is the way to go
        return

    model_type = configuration_class.model_type
    camel_case_model_name = configuration_class.__name__.split("Config")[0]

66
67
68
69
70
71
    try:
        module = importlib.import_module(f".test_modeling_{model_type.replace('-', '_')}", package="tests")
        model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None)
    except (ImportError, AttributeError):
        logger.error(f"No model tester class for {configuration_class.__name__}")
        return
72
73
74
75
76
77
78
79

    if model_tester_class is None:
        logger.warning(f"No model tester class for {configuration_class.__name__}")
        return

    model_tester = model_tester_class(parent=None)

    if hasattr(model_tester, "get_pipeline_config"):
80
        config = model_tester.get_pipeline_config()
81
    elif hasattr(model_tester, "get_config"):
82
        config = model_tester.get_config()
83
    else:
84
        config = None
85
86
        logger.warning(f"Model tester {model_tester_class.__name__} has no `get_config()`.")

87
88
    return config

89
90
91
92

@lru_cache(maxsize=100)
def get_tiny_tokenizer_from_checkpoint(checkpoint):
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
93
94
95
96
97
98
    if tokenizer.vocab_size < 300:
        # Wav2Vec2ForCTC for instance
        # ByT5Tokenizer
        # all are already small enough and have no Fast version that can
        # be retrained
        return tokenizer
99
    logger.info("Training new from iterator ...")
100
101
    vocabulary = string.ascii_letters + string.digits + " "
    tokenizer = tokenizer.train_new_from_iterator(vocabulary, vocab_size=len(vocabulary), show_progress=False)
102
    logger.info("Trained.")
103
104
105
    return tokenizer


106
def get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config, feature_extractor_class):
107
108
109
    try:
        feature_extractor = AutoFeatureExtractor.from_pretrained(checkpoint)
    except Exception:
110
111
112
113
114
115
116
        try:
            if feature_extractor_class is not None:
                feature_extractor = feature_extractor_class()
            else:
                feature_extractor = None
        except Exception:
            feature_extractor = None
117
118
    if hasattr(tiny_config, "image_size") and feature_extractor:
        feature_extractor = feature_extractor.__class__(size=tiny_config.image_size, crop_size=tiny_config.image_size)
119
120
121
122
123
124

    # Speech2TextModel specific.
    if hasattr(tiny_config, "input_feat_per_channel") and feature_extractor:
        feature_extractor = feature_extractor.__class__(
            feature_size=tiny_config.input_feat_per_channel, num_mel_bins=tiny_config.input_feat_per_channel
        )
125
126
127
    return feature_extractor


128
129
130
131
132
133
134
135
136
137
138
139
140
class ANY:
    def __init__(self, _type):
        self._type = _type

    def __eq__(self, other):
        return isinstance(other, self._type)

    def __repr__(self):
        return f"ANY({self._type.__name__})"


class PipelineTestCaseMeta(type):
    def __new__(mcs, name, bases, dct):
141
        def gen_test(ModelClass, checkpoint, tiny_config, tokenizer_class, feature_extractor_class):
142
143
144
            @skipIf(tiny_config is None, "TinyConfig does not exist")
            @skipIf(checkpoint is None, "checkpoint does not exist")
            def test(self):
145
146
                if ModelClass.__name__.endswith("ForCausalLM"):
                    tiny_config.is_encoder_decoder = False
147
148
149
150
151
                    if hasattr(tiny_config, "encoder_no_repeat_ngram_size"):
                        # specific for blenderbot which supports both decoder-only
                        # encoder/decoder but the test config  only reflects
                        # encoder/decoder arch
                        tiny_config.encoder_no_repeat_ngram_size = 0
152
153
                if ModelClass.__name__.endswith("WithLMHead"):
                    tiny_config.is_decoder = True
154
155
156
157
158
159
                try:
                    model = ModelClass(tiny_config)
                except ImportError as e:
                    self.skipTest(
                        f"Cannot run with {tiny_config} as the model requires a library that isn't installed: {e}"
                    )
160
161
                if hasattr(model, "eval"):
                    model = model.eval()
162
163
164
                if tokenizer_class is not None:
                    try:
                        tokenizer = get_tiny_tokenizer_from_checkpoint(checkpoint)
165
                        # XLNet actually defines it as -1.
166
                        if isinstance(model.config, (RobertaConfig, IBertConfig)):
167
168
                            tokenizer.model_max_length = model.config.max_position_embeddings - 2
                        elif (
169
170
171
                            hasattr(model.config, "max_position_embeddings")
                            and model.config.max_position_embeddings > 0
                        ):
172
173
174
175
176
177
178
179
                            tokenizer.model_max_length = model.config.max_position_embeddings
                    # Rust Panic exception are NOT Exception subclass
                    # Some test tokenizer contain broken vocabs or custom PreTokenizer, so we
                    # provide some default tokenizer and hope for the best.
                    except:  # noqa: E722
                        self.skipTest(f"Ignoring {ModelClass}, cannot create a simple tokenizer")
                else:
                    tokenizer = None
180
181
182
                feature_extractor = get_tiny_feature_extractor_from_checkpoint(
                    checkpoint, tiny_config, feature_extractor_class
                )
183
184
185
186
187

                if tokenizer is None and feature_extractor is None:
                    self.skipTest(
                        f"Ignoring {ModelClass}, cannot create a tokenizer or feature_extractor (PerceiverConfig with no FastTokenizer ?)"
                    )
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                pipeline, examples = self.get_test_pipeline(model, tokenizer, feature_extractor)
                if pipeline is None:
                    # The test can disable itself, but it should be very marginal
                    # Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
                    return
                self.run_pipeline_test(pipeline, examples)

                def run_batch_test(pipeline, examples):
                    # Need to copy because `Conversation` are stateful
                    if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
                        return  # No batching for this and it's OK

                    # 10 examples with batch size 4 means there needs to be a unfinished batch
                    # which is important for the unbatcher
202
203
204
205
                    def data(n):
                        for _ in range(n):
                            # Need to copy because Conversation object is mutated
                            yield copy.deepcopy(random.choice(examples))
206

207
                    out = []
208
                    for item in pipeline(data(10), batch_size=4):
209
210
                        out.append(item)
                    self.assertEqual(len(out), 10)
211
212

                run_batch_test(pipeline, examples)
213
214
215

            return test

216
217
218
219
220
221
222
223
224
225
226
        for prefix, key in [("pt", "model_mapping"), ("tf", "tf_model_mapping")]:
            mapping = dct.get(key, {})
            if mapping:
                for configuration, model_architectures in mapping.items():
                    if not isinstance(model_architectures, tuple):
                        model_architectures = (model_architectures,)

                    for model_architecture in model_architectures:
                        checkpoint = get_checkpoint_from_architecture(model_architecture)
                        tiny_config = get_tiny_config_from_class(configuration)
                        tokenizer_classes = TOKENIZER_MAPPING.get(configuration, [])
227
                        feature_extractor_class = FEATURE_EXTRACTOR_MAPPING.get(configuration, None)
228
229
230
231
232
233
                        feature_extractor_name = (
                            feature_extractor_class.__name__ if feature_extractor_class else "nofeature_extractor"
                        )
                        if not tokenizer_classes:
                            # We need to test even if there are no tokenizers.
                            tokenizer_classes = [None]
234
235
236
237
238
239
240
                        else:
                            # Remove the non defined tokenizers
                            # ByT5 and Perceiver are bytes-level and don't define
                            # FastTokenizer, we can just ignore those.
                            tokenizer_classes = [
                                tokenizer_class for tokenizer_class in tokenizer_classes if tokenizer_class is not None
                            ]
241

242
                        for tokenizer_class in tokenizer_classes:
243
244
245
246
                            if tokenizer_class is not None:
                                tokenizer_name = tokenizer_class.__name__
                            else:
                                tokenizer_name = "notokenizer"
247

248
249
250
                            test_name = f"test_{prefix}_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_name}_{feature_extractor_name}"

                            if tokenizer_class is not None or feature_extractor_class is not None:
251
252
253
254
255
256
257
                                dct[test_name] = gen_test(
                                    model_architecture,
                                    checkpoint,
                                    tiny_config,
                                    tokenizer_class,
                                    feature_extractor_class,
                                )
258

259
260
261
262
263
264
265
266
        @abstractmethod
        def inner(self):
            raise NotImplementedError("Not implemented test")

        # Force these 2 methods to exist
        dct["test_small_model_pt"] = dct.get("test_small_model_pt", inner)
        dct["test_small_model_tf"] = dct.get("test_small_model_tf", inner)

267
        return type.__new__(mcs, name, bases, dct)
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289


@is_pipeline_test
class CommonPipelineTest(unittest.TestCase):
    @require_torch
    def test_pipeline_iteration(self):
        from torch.utils.data import Dataset

        class MyDataset(Dataset):
            data = [
                "This is a test",
                "This restaurant is great",
                "This restaurant is awful",
            ]

            def __len__(self):
                return 3

            def __getitem__(self, i):
                return self.data[i]

        text_classifier = pipeline(
290
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
291
292
293
294
        )
        dataset = MyDataset()
        for output in text_classifier(dataset):
            self.assertEqual(output, {"label": ANY(str), "score": ANY(float)})
295

296
297
    @require_torch
    def test_check_task_auto_inference(self):
298
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
299
300
301

        self.assertIsInstance(pipe, TextClassificationPipeline)

302
303
304
305
306
307
308
309
310
311
    @require_torch
    def test_pipeline_batch_size_global(self):
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
        self.assertEqual(pipe._batch_size, None)
        self.assertEqual(pipe._num_workers, None)

        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", batch_size=2, num_workers=1)
        self.assertEqual(pipe._batch_size, 2)
        self.assertEqual(pipe._num_workers, 1)

312
313
314
315
316
    @require_torch
    def test_pipeline_override(self):
        class MyPipeline(TextClassificationPipeline):
            pass

317
        text_classifier = pipeline(model="hf-internal-testing/tiny-random-distilbert", pipeline_class=MyPipeline)
318
319
320
321
322
323
324
325
326
327
328

        self.assertIsInstance(text_classifier, MyPipeline)

    def test_check_task(self):
        task = get_task("gpt2")
        self.assertEqual(task, "text-generation")

        with self.assertRaises(RuntimeError):
            # Wrong framework
            get_task("espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best")

329
330
331
332
333
334
    @require_torch
    def test_iterator_data(self):
        def data(n: int):
            for _ in range(n):
                yield "This is a test"

335
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
336
337
338

        results = []
        for out in pipe(data(10)):
339
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
340
341
342
343
344
345
346
            results.append(out)
        self.assertEqual(len(results), 10)

        # When using multiple workers on streamable data it should still work
        # This will force using `num_workers=1` with a warning for now.
        results = []
        for out in pipe(data(10), num_workers=2):
347
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
348
349
350
351
352
353
354
355
356
            results.append(out)
        self.assertEqual(len(results), 10)

    @require_tf
    def test_iterator_data_tf(self):
        def data(n: int):
            for _ in range(n):
                yield "This is a test"

357
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", framework="tf")
358
359
360
        out = pipe("This is a test")
        results = []
        for out in pipe(data(10)):
361
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
362
363
364
            results.append(out)
        self.assertEqual(len(results), 10)

365
366
367
    @require_torch
    def test_unbatch_attentions_hidden_states(self):
        model = DistilBertForSequenceClassification.from_pretrained(
368
            "hf-internal-testing/tiny-random-distilbert", output_hidden_states=True, output_attentions=True
369
        )
370
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-distilbert")
371
372
373
374
375
376
377
        text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)

        # Used to throw an error because `hidden_states` are a tuple of tensors
        # instead of the expected tensor.
        outputs = text_classifier(["This is great !"] * 20, batch_size=32)
        self.assertEqual(len(outputs), 20)

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

@is_pipeline_test
class PipelinePadTest(unittest.TestCase):
    @require_torch
    def test_pipeline_padding(self):
        import torch

        items = [
            {
                "label": "label1",
                "input_ids": torch.LongTensor([[1, 23, 24, 2]]),
                "attention_mask": torch.LongTensor([[0, 1, 1, 0]]),
            },
            {
                "label": "label2",
                "input_ids": torch.LongTensor([[1, 23, 24, 43, 44, 2]]),
                "attention_mask": torch.LongTensor([[0, 1, 1, 1, 1, 0]]),
            },
        ]

        self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
        self.assertTrue(
            torch.allclose(
                _pad(items, "input_ids", 10, "right"),
                torch.LongTensor([[1, 23, 24, 2, 10, 10], [1, 23, 24, 43, 44, 2]]),
            )
        )
        self.assertTrue(
            torch.allclose(
                _pad(items, "input_ids", 10, "left"),
                torch.LongTensor([[10, 10, 1, 23, 24, 2], [1, 23, 24, 43, 44, 2]]),
            )
        )
        self.assertTrue(
            torch.allclose(
                _pad(items, "attention_mask", 0, "right"), torch.LongTensor([[0, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0]])
            )
        )

    @require_torch
    def test_pipeline_image_padding(self):
        import torch

        items = [
            {
                "label": "label1",
                "pixel_values": torch.zeros((1, 3, 10, 10)),
            },
            {
                "label": "label2",
                "pixel_values": torch.zeros((1, 3, 10, 10)),
            },
        ]

        self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
        self.assertTrue(
            torch.allclose(
                _pad(items, "pixel_values", 10, "right"),
                torch.zeros((2, 3, 10, 10)),
            )
        )

    @require_torch
    def test_pipeline_offset_mapping(self):
        import torch

        items = [
            {
                "offset_mappings": torch.zeros([1, 11, 2], dtype=torch.long),
            },
            {
                "offset_mappings": torch.zeros([1, 4, 2], dtype=torch.long),
            },
        ]

        self.assertTrue(
            torch.allclose(
                _pad(items, "offset_mappings", 0, "right"),
                torch.zeros((2, 11, 2), dtype=torch.long),
            ),
        )
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596


@is_pipeline_test
@require_torch
class PipelineUtilsTest(unittest.TestCase):
    def test_pipeline_dataset(self):
        from transformers.pipelines.pt_utils import PipelineDataset

        dummy_dataset = [0, 1, 2, 3]

        def add(number, extra=0):
            return number + extra

        dataset = PipelineDataset(dummy_dataset, add, {"extra": 2})
        self.assertEqual(len(dataset), 4)
        outputs = [dataset[i] for i in range(4)]
        self.assertEqual(outputs, [2, 3, 4, 5])

    def test_pipeline_iterator(self):
        from transformers.pipelines.pt_utils import PipelineIterator

        dummy_dataset = [0, 1, 2, 3]

        def add(number, extra=0):
            return number + extra

        dataset = PipelineIterator(dummy_dataset, add, {"extra": 2})
        self.assertEqual(len(dataset), 4)

        outputs = [item for item in dataset]
        self.assertEqual(outputs, [2, 3, 4, 5])

    def test_pipeline_iterator_no_len(self):
        from transformers.pipelines.pt_utils import PipelineIterator

        def dummy_dataset():
            for i in range(4):
                yield i

        def add(number, extra=0):
            return number + extra

        dataset = PipelineIterator(dummy_dataset(), add, {"extra": 2})
        with self.assertRaises(TypeError):
            len(dataset)

        outputs = [item for item in dataset]
        self.assertEqual(outputs, [2, 3, 4, 5])

    def test_pipeline_batch_unbatch_iterator(self):
        from transformers.pipelines.pt_utils import PipelineIterator

        dummy_dataset = [{"id": [0, 1, 2]}, {"id": [3]}]

        def add(number, extra=0):
            return {"id": [i + extra for i in number["id"]]}

        dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

        outputs = [item for item in dataset]
        self.assertEqual(outputs, [{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}])

    def test_pipeline_batch_unbatch_iterator_tensors(self):
        import torch

        from transformers.pipelines.pt_utils import PipelineIterator

        dummy_dataset = [{"id": torch.LongTensor([[10, 20], [0, 1], [0, 2]])}, {"id": torch.LongTensor([[3]])}]

        def add(number, extra=0):
            return {"id": number["id"] + extra}

        dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

        outputs = [item for item in dataset]
        self.assertEqual(
            nested_simplify(outputs), [{"id": [[12, 22]]}, {"id": [[2, 3]]}, {"id": [[2, 4]]}, {"id": [[5]]}]
        )

    def test_pipeline_chunk_iterator(self):
        from transformers.pipelines.pt_utils import PipelineChunkIterator

        def preprocess_chunk(n: int):
            for i in range(n):
                yield i

        dataset = [2, 3]

        dataset = PipelineChunkIterator(dataset, preprocess_chunk, {}, loader_batch_size=3)

        outputs = [item for item in dataset]

        self.assertEqual(outputs, [0, 1, 0, 1, 2])

    def test_pipeline_pack_iterator(self):
        from transformers.pipelines.pt_utils import PipelinePackIterator

        def pack(item):
            return {"id": item["id"] + 1, "is_last": item["is_last"]}

        dataset = [
            {"id": 0, "is_last": False},
            {"id": 1, "is_last": True},
            {"id": 0, "is_last": False},
            {"id": 1, "is_last": False},
            {"id": 2, "is_last": True},
        ]

        dataset = PipelinePackIterator(dataset, pack, {})

        outputs = [item for item in dataset]
        self.assertEqual(
            outputs,
            [
                [
                    {"id": 1},
                    {"id": 2},
                ],
                [
                    {"id": 1},
                    {"id": 2},
                    {"id": 3},
                ],
            ],
        )

    def test_pipeline_pack_unbatch_iterator(self):
        from transformers.pipelines.pt_utils import PipelinePackIterator

        dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, True, False]}, {"id": [3], "is_last": [True]}]

        def add(number, extra=0):
            return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}

        dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

        outputs = [item for item in dataset]
        self.assertEqual(outputs, [[{"id": 2}, {"id": 3}], [{"id": 4}, {"id": 5}]])
597
598
599
600
601
602
603
604
605
606
607

        # is_false Across batch
        dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, False, False]}, {"id": [3], "is_last": [True]}]

        def add(number, extra=0):
            return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}

        dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

        outputs = [item for item in dataset]
        self.assertEqual(outputs, [[{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}]])