test_pipelines_common.py 15.9 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
import importlib
import logging
import string
18
from abc import abstractmethod
19
from functools import lru_cache
20
from typing import List, Optional
21
from unittest import mock, skipIf
22

23
24
25
26
27
28
29
30
31
from transformers import (
    FEATURE_EXTRACTOR_MAPPING,
    TOKENIZER_MAPPING,
    AutoFeatureExtractor,
    AutoTokenizer,
    is_tf_available,
    is_torch_available,
    pipeline,
)
32
from transformers.file_utils import to_py_obj
33
from transformers.pipelines import Pipeline
34
35
36
from transformers.testing_utils import _run_slow_tests, is_pipeline_test, require_tf, require_torch, slow


37
38
39
40
logger = logging.getLogger(__name__)


def get_checkpoint_from_architecture(architecture):
41
42
43
44
45
    try:
        module = importlib.import_module(architecture.__module__)
    except ImportError:
        logger.error(f"Ignoring architecture {architecture}")
        return
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

    if hasattr(module, "_CHECKPOINT_FOR_DOC"):
        return module._CHECKPOINT_FOR_DOC
    else:
        logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}")


def get_tiny_config_from_class(configuration_class):
    if "OpenAIGPT" in configuration_class.__name__:
        # This is the only file that is inconsistent with the naming scheme.
        # Will rename this file if we decide this is the way to go
        return

    model_type = configuration_class.model_type
    camel_case_model_name = configuration_class.__name__.split("Config")[0]

62
63
64
65
66
67
    try:
        module = importlib.import_module(f".test_modeling_{model_type.replace('-', '_')}", package="tests")
        model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None)
    except (ImportError, AttributeError):
        logger.error(f"No model tester class for {configuration_class.__name__}")
        return
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    if model_tester_class is None:
        logger.warning(f"No model tester class for {configuration_class.__name__}")
        return

    model_tester = model_tester_class(parent=None)

    if hasattr(model_tester, "get_pipeline_config"):
        return model_tester.get_pipeline_config()
    elif hasattr(model_tester, "get_config"):
        return model_tester.get_config()
    else:
        logger.warning(f"Model tester {model_tester_class.__name__} has no `get_config()`.")


@lru_cache(maxsize=100)
def get_tiny_tokenizer_from_checkpoint(checkpoint):
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
86
    logger.info("Training new from iterator ...")
87
88
    vocabulary = string.ascii_letters + string.digits + " "
    tokenizer = tokenizer.train_new_from_iterator(vocabulary, vocab_size=len(vocabulary), show_progress=False)
89
    logger.info("Trained.")
90
91
92
    return tokenizer


93
94
95
96
97
98
99
100
101
102
def get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config):
    try:
        feature_extractor = AutoFeatureExtractor.from_pretrained(checkpoint)
    except Exception:
        feature_extractor = None
    if hasattr(tiny_config, "image_size") and feature_extractor:
        feature_extractor = feature_extractor.__class__(size=tiny_config.image_size, crop_size=tiny_config.image_size)
    return feature_extractor


103
104
105
106
107
108
109
110
111
112
113
114
115
class ANY:
    def __init__(self, _type):
        self._type = _type

    def __eq__(self, other):
        return isinstance(other, self._type)

    def __repr__(self):
        return f"ANY({self._type.__name__})"


class PipelineTestCaseMeta(type):
    def __new__(mcs, name, bases, dct):
116
        def gen_test(ModelClass, checkpoint, tiny_config, tokenizer_class, feature_extractor_class):
117
118
119
            @skipIf(tiny_config is None, "TinyConfig does not exist")
            @skipIf(checkpoint is None, "checkpoint does not exist")
            def test(self):
120
121
122
123
                if ModelClass.__name__.endswith("ForCausalLM"):
                    tiny_config.is_encoder_decoder = False
                if ModelClass.__name__.endswith("WithLMHead"):
                    tiny_config.is_decoder = True
124
125
126
                model = ModelClass(tiny_config)
                if hasattr(model, "eval"):
                    model = model.eval()
127
128
129
130
131
132
133
134
135
136
137
138
                if tokenizer_class is not None:
                    try:
                        tokenizer = get_tiny_tokenizer_from_checkpoint(checkpoint)
                        if hasattr(model.config, "max_position_embeddings"):
                            tokenizer.model_max_length = model.config.max_position_embeddings
                    # Rust Panic exception are NOT Exception subclass
                    # Some test tokenizer contain broken vocabs or custom PreTokenizer, so we
                    # provide some default tokenizer and hope for the best.
                    except:  # noqa: E722
                        self.skipTest(f"Ignoring {ModelClass}, cannot create a simple tokenizer")
                else:
                    tokenizer = None
139
140
                feature_extractor = get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config)
                self.run_pipeline_test(model, tokenizer, feature_extractor)
141
142
143

            return test

144
145
146
147
148
149
150
151
152
153
154
        for prefix, key in [("pt", "model_mapping"), ("tf", "tf_model_mapping")]:
            mapping = dct.get(key, {})
            if mapping:
                for configuration, model_architectures in mapping.items():
                    if not isinstance(model_architectures, tuple):
                        model_architectures = (model_architectures,)

                    for model_architecture in model_architectures:
                        checkpoint = get_checkpoint_from_architecture(model_architecture)
                        tiny_config = get_tiny_config_from_class(configuration)
                        tokenizer_classes = TOKENIZER_MAPPING.get(configuration, [])
155
                        feature_extractor_class = FEATURE_EXTRACTOR_MAPPING.get(configuration, None)
156
157
158
159
160
161
                        feature_extractor_name = (
                            feature_extractor_class.__name__ if feature_extractor_class else "nofeature_extractor"
                        )
                        if not tokenizer_classes:
                            # We need to test even if there are no tokenizers.
                            tokenizer_classes = [None]
162
                        for tokenizer_class in tokenizer_classes:
163
164
165
166
                            if tokenizer_class is not None:
                                tokenizer_name = tokenizer_class.__name__
                            else:
                                tokenizer_name = "notokenizer"
167

168
169
170
                            test_name = f"test_{prefix}_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_name}_{feature_extractor_name}"

                            if tokenizer_class is not None or feature_extractor_class is not None:
171
172
173
174
175
176
177
                                dct[test_name] = gen_test(
                                    model_architecture,
                                    checkpoint,
                                    tiny_config,
                                    tokenizer_class,
                                    feature_extractor_class,
                                )
178

179
180
181
182
183
184
185
186
        @abstractmethod
        def inner(self):
            raise NotImplementedError("Not implemented test")

        # Force these 2 methods to exist
        dct["test_small_model_pt"] = dct.get("test_small_model_pt", inner)
        dct["test_small_model_tf"] = dct.get("test_small_model_tf", inner)

187
188
189
        return type.__new__(mcs, name, bases, dct)


190
191
192
193
194
195
VALID_INPUTS = ["A simple string", ["list of strings"]]


@is_pipeline_test
class CustomInputPipelineCommonMixin:
    pipeline_task = None
196
197
198
199
200
    pipeline_loading_kwargs = {}  # Additional kwargs to load the pipeline with
    pipeline_running_kwargs = {}  # Additional kwargs to run the pipeline with
    small_models = []  # Models tested without the @slow decorator
    large_models = []  # Models tested with the @slow decorator
    valid_inputs = VALID_INPUTS  # Some inputs which are valid to compare fast and slow tokenizers
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    def setUp(self) -> None:
        if not is_tf_available() and not is_torch_available():
            return  # Currently no JAX pipelines

        # Download needed checkpoints
        models = self.small_models
        if _run_slow_tests:
            models = models + self.large_models

        for model_name in models:
            if is_torch_available():
                pipeline(
                    self.pipeline_task,
                    model=model_name,
                    tokenizer=model_name,
                    framework="pt",
                    **self.pipeline_loading_kwargs,
                )
            if is_tf_available():
                pipeline(
                    self.pipeline_task,
                    model=model_name,
                    tokenizer=model_name,
                    framework="tf",
                    **self.pipeline_loading_kwargs,
                )

    @require_torch
    @slow
    def test_pt_defaults(self):
        pipeline(self.pipeline_task, framework="pt", **self.pipeline_loading_kwargs)

    @require_tf
    @slow
236
    def test_tf_defaults(self):
237
238
239
240
241
        pipeline(self.pipeline_task, framework="tf", **self.pipeline_loading_kwargs)

    @require_torch
    def test_torch_small(self):
        for model_name in self.small_models:
242
            pipe_small = pipeline(
243
244
245
246
247
248
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                **self.pipeline_loading_kwargs,
            )
249
            self._test_pipeline(pipe_small)
250
251
252
253

    @require_tf
    def test_tf_small(self):
        for model_name in self.small_models:
254
            pipe_small = pipeline(
255
256
257
258
259
260
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                **self.pipeline_loading_kwargs,
            )
261
            self._test_pipeline(pipe_small)
262
263
264
265
266

    @require_torch
    @slow
    def test_torch_large(self):
        for model_name in self.large_models:
267
            pipe_large = pipeline(
268
269
270
271
272
273
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                **self.pipeline_loading_kwargs,
            )
274
            self._test_pipeline(pipe_large)
275
276
277
278
279

    @require_tf
    @slow
    def test_tf_large(self):
        for model_name in self.large_models:
280
            pipe_large = pipeline(
281
282
283
284
285
286
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                **self.pipeline_loading_kwargs,
            )
287
            self._test_pipeline(pipe_large)
288

289
    def _test_pipeline(self, pipe: Pipeline):
290
291
292
293
294
        raise NotImplementedError

    @require_torch
    def test_compare_slow_fast_torch(self):
        for model_name in self.small_models:
295
            pipe_slow = pipeline(
296
297
298
299
300
301
302
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                use_fast=False,
                **self.pipeline_loading_kwargs,
            )
303
            pipe_fast = pipeline(
304
305
306
307
308
309
310
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                use_fast=True,
                **self.pipeline_loading_kwargs,
            )
311
            self._compare_slow_fast_pipelines(pipe_slow, pipe_fast, method="forward")
312
313
314
315

    @require_tf
    def test_compare_slow_fast_tf(self):
        for model_name in self.small_models:
316
            pipe_slow = pipeline(
317
318
319
320
321
322
323
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                use_fast=False,
                **self.pipeline_loading_kwargs,
            )
324
            pipe_fast = pipeline(
325
326
327
328
329
330
331
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                use_fast=True,
                **self.pipeline_loading_kwargs,
            )
332
            self._compare_slow_fast_pipelines(pipe_slow, pipe_fast, method="call")
333

334
    def _compare_slow_fast_pipelines(self, pipe_slow: Pipeline, pipe_fast: Pipeline, method: str):
335
336
337
338
        """We check that the inputs to the models forward passes are identical for
        slow and fast tokenizers.
        """
        with mock.patch.object(
339
340
341
342
            pipe_slow.model, method, wraps=getattr(pipe_slow.model, method)
        ) as mock_slow, mock.patch.object(
            pipe_fast.model, method, wraps=getattr(pipe_fast.model, method)
        ) as mock_fast:
343
344
345
            for inputs in self.valid_inputs:
                if isinstance(inputs, dict):
                    inputs.update(self.pipeline_running_kwargs)
346
347
                    _ = pipe_slow(**inputs)
                    _ = pipe_fast(**inputs)
348
                else:
349
350
                    _ = pipe_slow(inputs, **self.pipeline_running_kwargs)
                    _ = pipe_fast(inputs, **self.pipeline_running_kwargs)
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

                mock_slow.assert_called()
                mock_fast.assert_called()

                self.assertEqual(len(mock_slow.call_args_list), len(mock_fast.call_args_list))
                for mock_slow_call_args, mock_fast_call_args in zip(
                    mock_slow.call_args_list, mock_slow.call_args_list
                ):
                    slow_call_args, slow_call_kwargs = mock_slow_call_args
                    fast_call_args, fast_call_kwargs = mock_fast_call_args

                    slow_call_args, slow_call_kwargs = to_py_obj(slow_call_args), to_py_obj(slow_call_kwargs)
                    fast_call_args, fast_call_kwargs = to_py_obj(fast_call_args), to_py_obj(fast_call_kwargs)

                    self.assertEqual(slow_call_args, fast_call_args)
                    self.assertDictEqual(slow_call_kwargs, fast_call_kwargs)


@is_pipeline_test
class MonoInputPipelineCommonMixin(CustomInputPipelineCommonMixin):
    """A version of the CustomInputPipelineCommonMixin
    with a predefined `_test_pipeline` method.
    """

    mandatory_keys = {}  # Keys which should be in the output
    invalid_inputs = [None]  # inputs which are not allowed
    expected_multi_result: Optional[List] = None
    expected_check_keys: Optional[List[str]] = None

380
381
    def _test_pipeline(self, pipe: Pipeline):
        self.assertIsNotNone(pipe)
382

383
        mono_result = pipe(self.valid_inputs[0], **self.pipeline_running_kwargs)
384
385
386
387
388
389
390
391
392
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in self.mandatory_keys:
            self.assertIn(key, mono_result[0])

393
        multi_result = [pipe(input, **self.pipeline_running_kwargs) for input in self.valid_inputs]
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

        if self.expected_multi_result is not None:
            for result, expect in zip(multi_result, self.expected_multi_result):
                for key in self.expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]),
                        set([o[key] for o in expect]),
                    )

        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in self.mandatory_keys:
                self.assertIn(key, result)

412
        self.assertRaises(Exception, pipe, self.invalid_inputs)