test_pipelines_common.py 15.2 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
import importlib
import logging
import string
from functools import lru_cache
19
from typing import List, Optional
20
from unittest import mock, skipIf
21

22
23
24
25
26
27
28
29
30
from transformers import (
    FEATURE_EXTRACTOR_MAPPING,
    TOKENIZER_MAPPING,
    AutoFeatureExtractor,
    AutoTokenizer,
    is_tf_available,
    is_torch_available,
    pipeline,
)
31
from transformers.file_utils import to_py_obj
32
from transformers.pipelines import Pipeline
33
34
35
from transformers.testing_utils import _run_slow_tests, is_pipeline_test, require_tf, require_torch, slow


36
37
38
39
logger = logging.getLogger(__name__)


def get_checkpoint_from_architecture(architecture):
40
41
42
43
44
    try:
        module = importlib.import_module(architecture.__module__)
    except ImportError:
        logger.error(f"Ignoring architecture {architecture}")
        return
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

    if hasattr(module, "_CHECKPOINT_FOR_DOC"):
        return module._CHECKPOINT_FOR_DOC
    else:
        logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}")


def get_tiny_config_from_class(configuration_class):
    if "OpenAIGPT" in configuration_class.__name__:
        # This is the only file that is inconsistent with the naming scheme.
        # Will rename this file if we decide this is the way to go
        return

    model_type = configuration_class.model_type
    camel_case_model_name = configuration_class.__name__.split("Config")[0]

61
62
63
64
65
66
    try:
        module = importlib.import_module(f".test_modeling_{model_type.replace('-', '_')}", package="tests")
        model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None)
    except (ImportError, AttributeError):
        logger.error(f"No model tester class for {configuration_class.__name__}")
        return
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

    if model_tester_class is None:
        logger.warning(f"No model tester class for {configuration_class.__name__}")
        return

    model_tester = model_tester_class(parent=None)

    if hasattr(model_tester, "get_pipeline_config"):
        return model_tester.get_pipeline_config()
    elif hasattr(model_tester, "get_config"):
        return model_tester.get_config()
    else:
        logger.warning(f"Model tester {model_tester_class.__name__} has no `get_config()`.")


@lru_cache(maxsize=100)
def get_tiny_tokenizer_from_checkpoint(checkpoint):
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
85
    logger.info("Training new from iterator ...")
86
87
    vocabulary = string.ascii_letters + string.digits + " "
    tokenizer = tokenizer.train_new_from_iterator(vocabulary, vocab_size=len(vocabulary), show_progress=False)
88
    logger.info("Trained.")
89
90
91
    return tokenizer


92
93
94
95
96
97
98
99
100
101
def get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config):
    try:
        feature_extractor = AutoFeatureExtractor.from_pretrained(checkpoint)
    except Exception:
        feature_extractor = None
    if hasattr(tiny_config, "image_size") and feature_extractor:
        feature_extractor = feature_extractor.__class__(size=tiny_config.image_size, crop_size=tiny_config.image_size)
    return feature_extractor


102
103
104
105
106
107
108
109
110
111
112
113
114
class ANY:
    def __init__(self, _type):
        self._type = _type

    def __eq__(self, other):
        return isinstance(other, self._type)

    def __repr__(self):
        return f"ANY({self._type.__name__})"


class PipelineTestCaseMeta(type):
    def __new__(mcs, name, bases, dct):
115
        def gen_test(ModelClass, checkpoint, tiny_config, tokenizer_class, feature_extractor_class):
116
117
118
            @skipIf(tiny_config is None, "TinyConfig does not exist")
            @skipIf(checkpoint is None, "checkpoint does not exist")
            def test(self):
119
120
121
122
                if ModelClass.__name__.endswith("ForCausalLM"):
                    tiny_config.is_encoder_decoder = False
                if ModelClass.__name__.endswith("WithLMHead"):
                    tiny_config.is_decoder = True
123
124
125
126
127
                model = ModelClass(tiny_config)
                if hasattr(model, "eval"):
                    model = model.eval()
                try:
                    tokenizer = get_tiny_tokenizer_from_checkpoint(checkpoint)
128
129
                    if hasattr(model.config, "max_position_embeddings"):
                        tokenizer.model_max_length = model.config.max_position_embeddings
130
131
132
133
                # Rust Panic exception are NOT Exception subclass
                # Some test tokenizer contain broken vocabs or custom PreTokenizer, so we
                # provide some default tokenizer and hope for the best.
                except:  # noqa: E722
134
                    self.skipTest(f"Ignoring {ModelClass}, cannot create a simple tokenizer")
135
136
                feature_extractor = get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config)
                self.run_pipeline_test(model, tokenizer, feature_extractor)
137
138
139

            return test

140
141
142
143
144
145
146
147
148
149
150
        for prefix, key in [("pt", "model_mapping"), ("tf", "tf_model_mapping")]:
            mapping = dct.get(key, {})
            if mapping:
                for configuration, model_architectures in mapping.items():
                    if not isinstance(model_architectures, tuple):
                        model_architectures = (model_architectures,)

                    for model_architecture in model_architectures:
                        checkpoint = get_checkpoint_from_architecture(model_architecture)
                        tiny_config = get_tiny_config_from_class(configuration)
                        tokenizer_classes = TOKENIZER_MAPPING.get(configuration, [])
151
                        feature_extractor_class = FEATURE_EXTRACTOR_MAPPING.get(configuration, None)
152
153
                        for tokenizer_class in tokenizer_classes:
                            if tokenizer_class is not None and tokenizer_class.__name__.endswith("Fast"):
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

                                tokenizer_name = tokenizer_class.__name__ if tokenizer_class else "notokenizer"
                                feature_extractor_name = (
                                    feature_extractor_class.__name__
                                    if feature_extractor_class
                                    else "nofeature_extractor"
                                )
                                test_name = f"test_{prefix}_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_name}_{feature_extractor_name}"
                                dct[test_name] = gen_test(
                                    model_architecture,
                                    checkpoint,
                                    tiny_config,
                                    tokenizer_class,
                                    feature_extractor_class,
                                )
169
170
171
172

        return type.__new__(mcs, name, bases, dct)


173
174
175
176
177
178
VALID_INPUTS = ["A simple string", ["list of strings"]]


@is_pipeline_test
class CustomInputPipelineCommonMixin:
    pipeline_task = None
179
180
181
182
183
    pipeline_loading_kwargs = {}  # Additional kwargs to load the pipeline with
    pipeline_running_kwargs = {}  # Additional kwargs to run the pipeline with
    small_models = []  # Models tested without the @slow decorator
    large_models = []  # Models tested with the @slow decorator
    valid_inputs = VALID_INPUTS  # Some inputs which are valid to compare fast and slow tokenizers
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    def setUp(self) -> None:
        if not is_tf_available() and not is_torch_available():
            return  # Currently no JAX pipelines

        # Download needed checkpoints
        models = self.small_models
        if _run_slow_tests:
            models = models + self.large_models

        for model_name in models:
            if is_torch_available():
                pipeline(
                    self.pipeline_task,
                    model=model_name,
                    tokenizer=model_name,
                    framework="pt",
                    **self.pipeline_loading_kwargs,
                )
            if is_tf_available():
                pipeline(
                    self.pipeline_task,
                    model=model_name,
                    tokenizer=model_name,
                    framework="tf",
                    **self.pipeline_loading_kwargs,
                )

    @require_torch
    @slow
    def test_pt_defaults(self):
        pipeline(self.pipeline_task, framework="pt", **self.pipeline_loading_kwargs)

    @require_tf
    @slow
219
    def test_tf_defaults(self):
220
221
222
223
224
        pipeline(self.pipeline_task, framework="tf", **self.pipeline_loading_kwargs)

    @require_torch
    def test_torch_small(self):
        for model_name in self.small_models:
225
            pipe_small = pipeline(
226
227
228
229
230
231
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                **self.pipeline_loading_kwargs,
            )
232
            self._test_pipeline(pipe_small)
233
234
235
236

    @require_tf
    def test_tf_small(self):
        for model_name in self.small_models:
237
            pipe_small = pipeline(
238
239
240
241
242
243
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                **self.pipeline_loading_kwargs,
            )
244
            self._test_pipeline(pipe_small)
245
246
247
248
249

    @require_torch
    @slow
    def test_torch_large(self):
        for model_name in self.large_models:
250
            pipe_large = pipeline(
251
252
253
254
255
256
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                **self.pipeline_loading_kwargs,
            )
257
            self._test_pipeline(pipe_large)
258
259
260
261
262

    @require_tf
    @slow
    def test_tf_large(self):
        for model_name in self.large_models:
263
            pipe_large = pipeline(
264
265
266
267
268
269
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                **self.pipeline_loading_kwargs,
            )
270
            self._test_pipeline(pipe_large)
271

272
    def _test_pipeline(self, pipe: Pipeline):
273
274
275
276
277
        raise NotImplementedError

    @require_torch
    def test_compare_slow_fast_torch(self):
        for model_name in self.small_models:
278
            pipe_slow = pipeline(
279
280
281
282
283
284
285
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                use_fast=False,
                **self.pipeline_loading_kwargs,
            )
286
            pipe_fast = pipeline(
287
288
289
290
291
292
293
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                use_fast=True,
                **self.pipeline_loading_kwargs,
            )
294
            self._compare_slow_fast_pipelines(pipe_slow, pipe_fast, method="forward")
295
296
297
298

    @require_tf
    def test_compare_slow_fast_tf(self):
        for model_name in self.small_models:
299
            pipe_slow = pipeline(
300
301
302
303
304
305
306
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                use_fast=False,
                **self.pipeline_loading_kwargs,
            )
307
            pipe_fast = pipeline(
308
309
310
311
312
313
314
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                use_fast=True,
                **self.pipeline_loading_kwargs,
            )
315
            self._compare_slow_fast_pipelines(pipe_slow, pipe_fast, method="call")
316

317
    def _compare_slow_fast_pipelines(self, pipe_slow: Pipeline, pipe_fast: Pipeline, method: str):
318
319
320
321
        """We check that the inputs to the models forward passes are identical for
        slow and fast tokenizers.
        """
        with mock.patch.object(
322
323
324
325
            pipe_slow.model, method, wraps=getattr(pipe_slow.model, method)
        ) as mock_slow, mock.patch.object(
            pipe_fast.model, method, wraps=getattr(pipe_fast.model, method)
        ) as mock_fast:
326
327
328
            for inputs in self.valid_inputs:
                if isinstance(inputs, dict):
                    inputs.update(self.pipeline_running_kwargs)
329
330
                    _ = pipe_slow(**inputs)
                    _ = pipe_fast(**inputs)
331
                else:
332
333
                    _ = pipe_slow(inputs, **self.pipeline_running_kwargs)
                    _ = pipe_fast(inputs, **self.pipeline_running_kwargs)
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

                mock_slow.assert_called()
                mock_fast.assert_called()

                self.assertEqual(len(mock_slow.call_args_list), len(mock_fast.call_args_list))
                for mock_slow_call_args, mock_fast_call_args in zip(
                    mock_slow.call_args_list, mock_slow.call_args_list
                ):
                    slow_call_args, slow_call_kwargs = mock_slow_call_args
                    fast_call_args, fast_call_kwargs = mock_fast_call_args

                    slow_call_args, slow_call_kwargs = to_py_obj(slow_call_args), to_py_obj(slow_call_kwargs)
                    fast_call_args, fast_call_kwargs = to_py_obj(fast_call_args), to_py_obj(fast_call_kwargs)

                    self.assertEqual(slow_call_args, fast_call_args)
                    self.assertDictEqual(slow_call_kwargs, fast_call_kwargs)


@is_pipeline_test
class MonoInputPipelineCommonMixin(CustomInputPipelineCommonMixin):
    """A version of the CustomInputPipelineCommonMixin
    with a predefined `_test_pipeline` method.
    """

    mandatory_keys = {}  # Keys which should be in the output
    invalid_inputs = [None]  # inputs which are not allowed
    expected_multi_result: Optional[List] = None
    expected_check_keys: Optional[List[str]] = None

363
364
    def _test_pipeline(self, pipe: Pipeline):
        self.assertIsNotNone(pipe)
365

366
        mono_result = pipe(self.valid_inputs[0], **self.pipeline_running_kwargs)
367
368
369
370
371
372
373
374
375
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in self.mandatory_keys:
            self.assertIn(key, mono_result[0])

376
        multi_result = [pipe(input, **self.pipeline_running_kwargs) for input in self.valid_inputs]
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

        if self.expected_multi_result is not None:
            for result, expect in zip(multi_result, self.expected_multi_result):
                for key in self.expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]),
                        set([o[key] for o in expect]),
                    )

        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in self.mandatory_keys:
                self.assertIn(key, result)

395
        self.assertRaises(Exception, pipe, self.invalid_inputs)