test_pipelines_common.py 16.3 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
17
import importlib
import logging
18
import random
19
import string
20
import unittest
21
from abc import abstractmethod
22
from functools import lru_cache
23
24
from unittest import skipIf

25
26
27
28
29
from transformers import (
    FEATURE_EXTRACTOR_MAPPING,
    TOKENIZER_MAPPING,
    AutoFeatureExtractor,
    AutoTokenizer,
30
    DistilBertForSequenceClassification,
31
32
    IBertConfig,
    RobertaConfig,
33
    TextClassificationPipeline,
34
35
    pipeline,
)
36
from transformers.pipelines import get_task
37
from transformers.pipelines.base import _pad
38
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch
39
40


41
42
43
44
logger = logging.getLogger(__name__)


def get_checkpoint_from_architecture(architecture):
45
46
47
48
49
    try:
        module = importlib.import_module(architecture.__module__)
    except ImportError:
        logger.error(f"Ignoring architecture {architecture}")
        return
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

    if hasattr(module, "_CHECKPOINT_FOR_DOC"):
        return module._CHECKPOINT_FOR_DOC
    else:
        logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}")


def get_tiny_config_from_class(configuration_class):
    if "OpenAIGPT" in configuration_class.__name__:
        # This is the only file that is inconsistent with the naming scheme.
        # Will rename this file if we decide this is the way to go
        return

    model_type = configuration_class.model_type
    camel_case_model_name = configuration_class.__name__.split("Config")[0]

66
67
68
69
70
71
    try:
        module = importlib.import_module(f".test_modeling_{model_type.replace('-', '_')}", package="tests")
        model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None)
    except (ImportError, AttributeError):
        logger.error(f"No model tester class for {configuration_class.__name__}")
        return
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    if model_tester_class is None:
        logger.warning(f"No model tester class for {configuration_class.__name__}")
        return

    model_tester = model_tester_class(parent=None)

    if hasattr(model_tester, "get_pipeline_config"):
        return model_tester.get_pipeline_config()
    elif hasattr(model_tester, "get_config"):
        return model_tester.get_config()
    else:
        logger.warning(f"Model tester {model_tester_class.__name__} has no `get_config()`.")


@lru_cache(maxsize=100)
def get_tiny_tokenizer_from_checkpoint(checkpoint):
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
90
91
92
93
94
95
    if tokenizer.vocab_size < 300:
        # Wav2Vec2ForCTC for instance
        # ByT5Tokenizer
        # all are already small enough and have no Fast version that can
        # be retrained
        return tokenizer
96
    logger.info("Training new from iterator ...")
97
98
    vocabulary = string.ascii_letters + string.digits + " "
    tokenizer = tokenizer.train_new_from_iterator(vocabulary, vocab_size=len(vocabulary), show_progress=False)
99
    logger.info("Trained.")
100
101
102
    return tokenizer


103
104
105
106
107
108
109
def get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config):
    try:
        feature_extractor = AutoFeatureExtractor.from_pretrained(checkpoint)
    except Exception:
        feature_extractor = None
    if hasattr(tiny_config, "image_size") and feature_extractor:
        feature_extractor = feature_extractor.__class__(size=tiny_config.image_size, crop_size=tiny_config.image_size)
110
111
112
113
114
115

    # Speech2TextModel specific.
    if hasattr(tiny_config, "input_feat_per_channel") and feature_extractor:
        feature_extractor = feature_extractor.__class__(
            feature_size=tiny_config.input_feat_per_channel, num_mel_bins=tiny_config.input_feat_per_channel
        )
116
117
118
    return feature_extractor


119
120
121
122
123
124
125
126
127
128
129
130
131
class ANY:
    def __init__(self, _type):
        self._type = _type

    def __eq__(self, other):
        return isinstance(other, self._type)

    def __repr__(self):
        return f"ANY({self._type.__name__})"


class PipelineTestCaseMeta(type):
    def __new__(mcs, name, bases, dct):
132
        def gen_test(ModelClass, checkpoint, tiny_config, tokenizer_class, feature_extractor_class):
133
134
135
            @skipIf(tiny_config is None, "TinyConfig does not exist")
            @skipIf(checkpoint is None, "checkpoint does not exist")
            def test(self):
136
137
                if ModelClass.__name__.endswith("ForCausalLM"):
                    tiny_config.is_encoder_decoder = False
138
139
140
141
142
                    if hasattr(tiny_config, "encoder_no_repeat_ngram_size"):
                        # specific for blenderbot which supports both decoder-only
                        # encoder/decoder but the test config  only reflects
                        # encoder/decoder arch
                        tiny_config.encoder_no_repeat_ngram_size = 0
143
144
                if ModelClass.__name__.endswith("WithLMHead"):
                    tiny_config.is_decoder = True
145
146
147
148
149
150
                try:
                    model = ModelClass(tiny_config)
                except ImportError as e:
                    self.skipTest(
                        f"Cannot run with {tiny_config} as the model requires a library that isn't installed: {e}"
                    )
151
152
                if hasattr(model, "eval"):
                    model = model.eval()
153
154
155
                if tokenizer_class is not None:
                    try:
                        tokenizer = get_tiny_tokenizer_from_checkpoint(checkpoint)
156
                        # XLNet actually defines it as -1.
157
                        if isinstance(model.config, (RobertaConfig, IBertConfig)):
158
159
                            tokenizer.model_max_length = model.config.max_position_embeddings - 2
                        elif (
160
161
162
                            hasattr(model.config, "max_position_embeddings")
                            and model.config.max_position_embeddings > 0
                        ):
163
164
165
166
167
168
169
170
                            tokenizer.model_max_length = model.config.max_position_embeddings
                    # Rust Panic exception are NOT Exception subclass
                    # Some test tokenizer contain broken vocabs or custom PreTokenizer, so we
                    # provide some default tokenizer and hope for the best.
                    except:  # noqa: E722
                        self.skipTest(f"Ignoring {ModelClass}, cannot create a simple tokenizer")
                else:
                    tokenizer = None
171
                feature_extractor = get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
                pipeline, examples = self.get_test_pipeline(model, tokenizer, feature_extractor)
                if pipeline is None:
                    # The test can disable itself, but it should be very marginal
                    # Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
                    return
                self.run_pipeline_test(pipeline, examples)

                def run_batch_test(pipeline, examples):
                    # Need to copy because `Conversation` are stateful
                    if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
                        return  # No batching for this and it's OK

                    # 10 examples with batch size 4 means there needs to be a unfinished batch
                    # which is important for the unbatcher
186
187
188
189
                    def data(n):
                        for _ in range(n):
                            # Need to copy because Conversation object is mutated
                            yield copy.deepcopy(random.choice(examples))
190

191
                    for item in pipeline(data(10), batch_size=4):
192
193
194
                        pass

                run_batch_test(pipeline, examples)
195
196
197

            return test

198
199
200
201
202
203
204
205
206
207
208
        for prefix, key in [("pt", "model_mapping"), ("tf", "tf_model_mapping")]:
            mapping = dct.get(key, {})
            if mapping:
                for configuration, model_architectures in mapping.items():
                    if not isinstance(model_architectures, tuple):
                        model_architectures = (model_architectures,)

                    for model_architecture in model_architectures:
                        checkpoint = get_checkpoint_from_architecture(model_architecture)
                        tiny_config = get_tiny_config_from_class(configuration)
                        tokenizer_classes = TOKENIZER_MAPPING.get(configuration, [])
209
                        feature_extractor_class = FEATURE_EXTRACTOR_MAPPING.get(configuration, None)
210
211
212
213
214
215
                        feature_extractor_name = (
                            feature_extractor_class.__name__ if feature_extractor_class else "nofeature_extractor"
                        )
                        if not tokenizer_classes:
                            # We need to test even if there are no tokenizers.
                            tokenizer_classes = [None]
216
                        for tokenizer_class in tokenizer_classes:
217
218
219
220
                            if tokenizer_class is not None:
                                tokenizer_name = tokenizer_class.__name__
                            else:
                                tokenizer_name = "notokenizer"
221

222
223
224
                            test_name = f"test_{prefix}_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_name}_{feature_extractor_name}"

                            if tokenizer_class is not None or feature_extractor_class is not None:
225
226
227
228
229
230
231
                                dct[test_name] = gen_test(
                                    model_architecture,
                                    checkpoint,
                                    tiny_config,
                                    tokenizer_class,
                                    feature_extractor_class,
                                )
232

233
234
235
236
237
238
239
240
        @abstractmethod
        def inner(self):
            raise NotImplementedError("Not implemented test")

        # Force these 2 methods to exist
        dct["test_small_model_pt"] = dct.get("test_small_model_pt", inner)
        dct["test_small_model_tf"] = dct.get("test_small_model_tf", inner)

241
        return type.__new__(mcs, name, bases, dct)
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263


@is_pipeline_test
class CommonPipelineTest(unittest.TestCase):
    @require_torch
    def test_pipeline_iteration(self):
        from torch.utils.data import Dataset

        class MyDataset(Dataset):
            data = [
                "This is a test",
                "This restaurant is great",
                "This restaurant is awful",
            ]

            def __len__(self):
                return 3

            def __getitem__(self, i):
                return self.data[i]

        text_classifier = pipeline(
264
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
265
266
267
268
        )
        dataset = MyDataset()
        for output in text_classifier(dataset):
            self.assertEqual(output, {"label": ANY(str), "score": ANY(float)})
269

270
271
    @require_torch
    def test_check_task_auto_inference(self):
272
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
273
274
275
276
277
278
279
280

        self.assertIsInstance(pipe, TextClassificationPipeline)

    @require_torch
    def test_pipeline_override(self):
        class MyPipeline(TextClassificationPipeline):
            pass

281
        text_classifier = pipeline(model="hf-internal-testing/tiny-random-distilbert", pipeline_class=MyPipeline)
282
283
284
285
286
287
288
289
290
291
292

        self.assertIsInstance(text_classifier, MyPipeline)

    def test_check_task(self):
        task = get_task("gpt2")
        self.assertEqual(task, "text-generation")

        with self.assertRaises(RuntimeError):
            # Wrong framework
            get_task("espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best")

293
294
295
296
297
298
    @require_torch
    def test_iterator_data(self):
        def data(n: int):
            for _ in range(n):
                yield "This is a test"

299
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
300
301
302

        results = []
        for out in pipe(data(10)):
303
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
304
305
306
307
308
309
310
            results.append(out)
        self.assertEqual(len(results), 10)

        # When using multiple workers on streamable data it should still work
        # This will force using `num_workers=1` with a warning for now.
        results = []
        for out in pipe(data(10), num_workers=2):
311
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
312
313
314
315
316
317
318
319
320
            results.append(out)
        self.assertEqual(len(results), 10)

    @require_tf
    def test_iterator_data_tf(self):
        def data(n: int):
            for _ in range(n):
                yield "This is a test"

321
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", framework="tf")
322
323
324
        out = pipe("This is a test")
        results = []
        for out in pipe(data(10)):
325
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
326
327
328
            results.append(out)
        self.assertEqual(len(results), 10)

329
330
331
    @require_torch
    def test_unbatch_attentions_hidden_states(self):
        model = DistilBertForSequenceClassification.from_pretrained(
332
            "hf-internal-testing/tiny-random-distilbert", output_hidden_states=True, output_attentions=True
333
        )
334
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-distilbert")
335
336
337
338
339
340
341
        text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)

        # Used to throw an error because `hidden_states` are a tuple of tensors
        # instead of the expected tensor.
        outputs = text_classifier(["This is great !"] * 20, batch_size=32)
        self.assertEqual(len(outputs), 20)

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

@is_pipeline_test
class PipelinePadTest(unittest.TestCase):
    @require_torch
    def test_pipeline_padding(self):
        import torch

        items = [
            {
                "label": "label1",
                "input_ids": torch.LongTensor([[1, 23, 24, 2]]),
                "attention_mask": torch.LongTensor([[0, 1, 1, 0]]),
            },
            {
                "label": "label2",
                "input_ids": torch.LongTensor([[1, 23, 24, 43, 44, 2]]),
                "attention_mask": torch.LongTensor([[0, 1, 1, 1, 1, 0]]),
            },
        ]

        self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
        self.assertTrue(
            torch.allclose(
                _pad(items, "input_ids", 10, "right"),
                torch.LongTensor([[1, 23, 24, 2, 10, 10], [1, 23, 24, 43, 44, 2]]),
            )
        )
        self.assertTrue(
            torch.allclose(
                _pad(items, "input_ids", 10, "left"),
                torch.LongTensor([[10, 10, 1, 23, 24, 2], [1, 23, 24, 43, 44, 2]]),
            )
        )
        self.assertTrue(
            torch.allclose(
                _pad(items, "attention_mask", 0, "right"), torch.LongTensor([[0, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0]])
            )
        )

    @require_torch
    def test_pipeline_image_padding(self):
        import torch

        items = [
            {
                "label": "label1",
                "pixel_values": torch.zeros((1, 3, 10, 10)),
            },
            {
                "label": "label2",
                "pixel_values": torch.zeros((1, 3, 10, 10)),
            },
        ]

        self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
        self.assertTrue(
            torch.allclose(
                _pad(items, "pixel_values", 10, "right"),
                torch.zeros((2, 3, 10, 10)),
            )
        )

    @require_torch
    def test_pipeline_offset_mapping(self):
        import torch

        items = [
            {
                "offset_mappings": torch.zeros([1, 11, 2], dtype=torch.long),
            },
            {
                "offset_mappings": torch.zeros([1, 4, 2], dtype=torch.long),
            },
        ]

        self.assertTrue(
            torch.allclose(
                _pad(items, "offset_mappings", 0, "right"),
                torch.zeros((2, 11, 2), dtype=torch.long),
            ),
        )