"vscode:/vscode.git/clone" did not exist on "50e62a4cb4d503e3559b88838b8cf9f745fef516"
training_args.py 66.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
Julien Chaumond's avatar
Julien Chaumond committed
16
import json
17
import math
Julien Plu's avatar
Julien Plu committed
18
import os
19
import warnings
20
from dataclasses import asdict, dataclass, field
21
from enum import Enum
22
from pathlib import Path
23
from typing import Any, Dict, List, Optional
Julien Chaumond's avatar
Julien Chaumond committed
24

25
from .debug_utils import DebugOption
26
27
from .trainer_utils import EvaluationStrategy, HubStrategy, IntervalStrategy, SchedulerType, ShardedDDPOption
from .utils import (
28
    ExplicitEnum,
Sylvain Gugger's avatar
Sylvain Gugger committed
29
    cached_property,
30
    get_full_repo_name,
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
    is_sagemaker_dp_enabled,
    is_sagemaker_mp_enabled,
Sylvain Gugger's avatar
Sylvain Gugger committed
33
    is_torch_available,
Stas Bekman's avatar
Stas Bekman committed
34
    is_torch_bf16_available,
35
    is_torch_tf32_available,
Sylvain Gugger's avatar
Sylvain Gugger committed
36
    is_torch_tpu_available,
37
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
39
    torch_required,
)
Julien Chaumond's avatar
Julien Chaumond committed
40
41
42
43
44


if is_torch_available():
    import torch

45
if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
46
47
    import torch_xla.core.xla_model as xm

Sylvain Gugger's avatar
Sylvain Gugger committed
48
if is_sagemaker_dp_enabled():
49
50
    import smdistributed.dataparallel.torch.distributed as sm_dist

Sylvain Gugger's avatar
Sylvain Gugger committed
51
52
53
54
55
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp

    smp.init()

Lysandre Debut's avatar
Lysandre Debut committed
56

Lysandre Debut's avatar
Lysandre Debut committed
57
logger = logging.get_logger(__name__)
58
59
log_levels = logging.get_log_levels_dict().copy()
trainer_log_levels = dict(**log_levels, passive=-1)
60
61


Julien Plu's avatar
Julien Plu committed
62
63
64
65
66
67
68
69
70
71
72
def default_logdir() -> str:
    """
    Same default as PyTorch
    """
    import socket
    from datetime import datetime

    current_time = datetime.now().strftime("%b%d_%H-%M-%S")
    return os.path.join("runs", current_time + "_" + socket.gethostname())


73
74
75
76
77
78
79
class OptimizerNames(ExplicitEnum):
    """
    Stores the acceptable string identifiers for optimizers.
    """

    ADAMW_HF = "adamw_hf"
    ADAMW_TORCH = "adamw_torch"
80
    ADAMW_TORCH_XLA = "adamw_torch_xla"
81
82
83
84
    ADAMW_APEX_FUSED = "adamw_apex_fused"
    ADAFACTOR = "adafactor"


85
86
87
@dataclass
class TrainingArguments:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
88
89
    TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop
    itself**.
90

Sylvain Gugger's avatar
Sylvain Gugger committed
91
92
93
    Using [`HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.
94
95

    Parameters:
96
        output_dir (`str`):
97
            The output directory where the model predictions and checkpoints will be written.
98
        overwrite_output_dir (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
            If `True`, overwrite the content of the output directory. Use this to continue training if `output_dir`
            points to a checkpoint directory.
101
        do_train (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
102
103
            Whether to run training or not. This argument is not directly used by [`Trainer`], it's intended to be used
            by your training/evaluation scripts instead. See the [example
104
            scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
105
        do_eval (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
108
            Whether to run evaluation on the validation set or not. Will be set to `True` if `evaluation_strategy` is
            different from `"no"`. This argument is not directly used by [`Trainer`], it's intended to be used by your
            training/evaluation scripts instead. See the [example
109
            scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
110
        do_predict (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
            Whether to run predictions on the test set or not. This argument is not directly used by [`Trainer`], it's
            intended to be used by your training/evaluation scripts instead. See the [example
113
            scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
114
        evaluation_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"no"`):
115
116
            The evaluation strategy to adopt during training. Possible values are:

117
118
119
                - `"no"`: No evaluation is done during training.
                - `"steps"`: Evaluation is done (and logged) every `eval_steps`.
                - `"epoch"`: Evaluation is done at the end of each epoch.
120

121
        prediction_loss_only (`bool`, *optional*, defaults to `False`):
122
            When performing evaluation and generating predictions, only returns the loss.
123
        per_device_train_batch_size (`int`, *optional*, defaults to 8):
124
            The batch size per GPU/TPU core/CPU for training.
125
        per_device_eval_batch_size (`int`, *optional*, defaults to 8):
126
            The batch size per GPU/TPU core/CPU for evaluation.
127
        gradient_accumulation_steps (`int`, *optional*, defaults to 1):
128
            Number of updates steps to accumulate the gradients for, before performing a backward/update pass.
129

130
            <Tip warning={true}>
131

Sylvain Gugger's avatar
Sylvain Gugger committed
132
133
            When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging,
            evaluation, save will be conducted every `gradient_accumulation_steps * xxx_step` training examples.
134
135
136
137

            </Tip>

        eval_accumulation_steps (`int`, *optional*):
138
139
140
            Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If
            left unset, the whole predictions are accumulated on GPU/TPU before being moved to the CPU (faster but
            requires more memory).
141
142
        eval_delay (`float`, *optional*):
            Number of epochs or steps to wait for before the first evaluation can be performed, depending on the evaluation_strategy.
143
144
145
        learning_rate (`float`, *optional*, defaults to 5e-5):
            The initial learning rate for [`AdamW`] optimizer.
        weight_decay (`float`, *optional*, defaults to 0):
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
            The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in [`AdamW`]
            optimizer.
148
149
150
151
152
153
154
        adam_beta1 (`float`, *optional*, defaults to 0.9):
            The beta1 hyperparameter for the [`AdamW`] optimizer.
        adam_beta2 (`float`, *optional*, defaults to 0.999):
            The beta2 hyperparameter for the [`AdamW`] optimizer.
        adam_epsilon (`float`, *optional*, defaults to 1e-8):
            The epsilon hyperparameter for the [`AdamW`] optimizer.
        max_grad_norm (`float`, *optional*, defaults to 1.0):
155
            Maximum gradient norm (for gradient clipping).
156
        num_train_epochs(`float`, *optional*, defaults to 3.0):
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
            Total number of training epochs to perform (if not an integer, will perform the decimal part percents of
            the last epoch before stopping training).
159
        max_steps (`int`, *optional*, defaults to -1):
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
162
            If set to a positive number, the total number of training steps to perform. Overrides `num_train_epochs`.
            In case of using a finite iterable dataset the training may stop before reaching the set number of steps
            when all data is exhausted
163
        lr_scheduler_type (`str` or [`SchedulerType`], *optional*, defaults to `"linear"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
164
            The scheduler type to use. See the documentation of [`SchedulerType`] for all possible values.
165
166
167
        warmup_ratio (`float`, *optional*, defaults to 0.0):
            Ratio of total training steps used for a linear warmup from 0 to `learning_rate`.
        warmup_steps (`int`, *optional*, defaults to 0):
Sylvain Gugger's avatar
Sylvain Gugger committed
168
            Number of steps used for a linear warmup from 0 to `learning_rate`. Overrides any effect of `warmup_ratio`.
169
        log_level (`str`, *optional*, defaults to `passive`):
170
171
172
            Logger log level to use on the main process. Possible choices are the log levels as strings: 'debug',
            'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and lets the
            application set the level.
173
174
175
176
        log_level_replica (`str`, *optional*, defaults to `passive`):
            Logger log level to use on replicas. Same choices as `log_level`"
        log_on_each_node (`bool`, *optional*, defaults to `True`):
            In multinode distributed training, whether to log using `log_level` once per node, or only on the main
177
            node.
178
179
180
181
        logging_dir (`str`, *optional*):
            [TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to
            *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***.
        logging_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`):
182
183
            The logging strategy to adopt during training. Possible values are:

184
185
186
187
188
189
190
191
192
                - `"no"`: No logging is done during training.
                - `"epoch"`: Logging is done at the end of each epoch.
                - `"steps"`: Logging is done every `logging_steps`.

        logging_first_step (`bool`, *optional*, defaults to `False`):
            Whether to log and evaluate the first `global_step` or not.
        logging_steps (`int`, *optional*, defaults to 500):
            Number of update steps between two logs if `logging_strategy="steps"`.
        logging_nan_inf_filter (`bool`, *optional*, defaults to `True`):
Stas Bekman's avatar
Stas Bekman committed
193
194
            Whether to filter `nan` and `inf` losses for logging. If set to `True` the loss of every step that is `nan`
            or `inf` is filtered and the average loss of the current logging window is taken instead.
195

196
197
            <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
198
199
            `logging_nan_inf_filter` only influences the logging of loss values, it does not change the behavior the
            gradient is computed or applied to the model.
200

201
            </Tip>
202

203
        save_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`):
204
            The checkpoint save strategy to adopt during training. Possible values are:
205

206
207
208
209
210
211
                - `"no"`: No save is done during training.
                - `"epoch"`: Save is done at the end of each epoch.
                - `"steps"`: Save is done every `save_steps`.
        save_steps (`int`, *optional*, defaults to 500):
            Number of updates steps before two checkpoint saves if `save_strategy="steps"`.
        save_total_limit (`int`, *optional*):
212
            If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in
213
214
            `output_dir`.
        save_on_each_node (`bool`, *optional*, defaults to `False`):
215
216
217
218
219
            When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on
            the main one.

            This should not be activated when the different nodes use the same storage as the files will be saved with
            the same names for each node.
220
        no_cuda (`bool`, *optional*, defaults to `False`):
Alan deLevie's avatar
Alan deLevie committed
221
            Whether to not use CUDA even when it is available or not.
222
        seed (`int`, *optional*, defaults to 42):
223
            Random seed that will be set at the beginning of training. To ensure reproducibility across runs, use the
Sylvain Gugger's avatar
Sylvain Gugger committed
224
            [`~Trainer.model_init`] function to instantiate the model if it has some randomly initialized parameters.
225
226
227
228
        data_seed (`int`, *optional*):
            Random seed to be used with data samplers. If not set, random generators for data sampling will use the
            same seed as `seed`. This can be used to ensure reproducibility of data sampling, independent of the model
            seed.
229
        bf16 (`bool`, *optional*, defaults to `False`):
230
231
            Whether to use bf16 16-bit (mixed) precision training instead of 32-bit training. Requires Ampere or higher
            NVIDIA architecture. This is an experimental API and it may change.
232
        fp16 (`bool`, *optional*, defaults to `False`):
233
            Whether to use fp16 16-bit (mixed) precision training instead of 32-bit training.
234
        fp16_opt_level (`str`, *optional*, defaults to 'O1'):
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
            For `fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details on
            the [Apex documentation](https://nvidia.github.io/apex/amp).
237
238
239
        fp16_backend (`str`, *optional*, defaults to `"auto"`):
            This argument is deprecated. Use `half_precision_backend` instead.
        half_precision_backend (`str`, *optional*, defaults to `"auto"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
240
241
242
            The backend to use for mixed precision training. Must be one of `"auto"`, `"amp"` or `"apex"`. `"auto"`
            will use AMP or APEX depending on the PyTorch version detected, while the other choices will force the
            requested backend.
243
        bf16_full_eval (`bool`, *optional*, defaults to `False`):
244
245
            Whether to use full bfloat16 evaluation instead of 32-bit. This will be faster and save memory but can harm
            metric values. This is an experimental API and it may change.
246
        fp16_full_eval (`bool`, *optional*, defaults to `False`):
247
248
            Whether to use full float16 evaluation instead of 32-bit. This will be faster and save memory but can harm
            metric values.
249
        tf32 (`bool`, *optional*):
250
251
            Whether to enable tf32 mode, available in Ampere and newer GPU architectures. This is an experimental API
            and it may change.
252
        local_rank (`int`, *optional*, defaults to -1):
253
            Rank of the process during distributed training.
254
255
256
        xpu_backend (`str`, *optional*):
            The backend to use for xpu distributed training. Must be one of `"mpi"` or `"ccl"`.
        tpu_num_cores (`int`, *optional*):
Tiger's avatar
Tiger committed
257
            When training on TPU, the number of TPU cores (automatically passed by launcher script).
258
        dataloader_drop_last (`bool`, *optional*, defaults to `False`):
259
260
            Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size)
            or not.
261
        eval_steps (`int`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
262
263
            Number of update steps between two evaluations if `evaluation_strategy="steps"`. Will default to the same
            value as `logging_steps` if not set.
264
        dataloader_num_workers (`int`, *optional*, defaults to 0):
Sylvain Gugger's avatar
Sylvain Gugger committed
265
266
            Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the
            main process.
267
        past_index (`int`, *optional*, defaults to -1):
Sylvain Gugger's avatar
Sylvain Gugger committed
268
269
270
271
            Some models like [TransformerXL](../model_doc/transformerxl) or [XLNet](../model_doc/xlnet) can make use of
            the past hidden states for their predictions. If this argument is set to a positive int, the `Trainer` will
            use the corresponding output (usually index 2) as the past state and feed it to the model at the next
            training step under the keyword argument `mems`.
272
        run_name (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
273
274
            A descriptor for the run. Typically used for [wandb](https://www.wandb.com/) and
            [mlflow](https://www.mlflow.org/) logging.
275
        disable_tqdm (`bool`, *optional*):
276
            Whether or not to disable the tqdm progress bars and table of metrics produced by
Sylvain Gugger's avatar
Sylvain Gugger committed
277
278
            [`~notebook.NotebookTrainingTracker`] in Jupyter Notebooks. Will default to `True` if the logging level is
            set to warn or lower (default), `False` otherwise.
279
280
        remove_unused_columns (`bool`, *optional*, defaults to `True`):
            If using `datasets.Dataset` datasets, whether or not to automatically remove the columns unused by the
281
            model forward method.
282

283
284
            (Note that this behavior is not implemented for [`TFTrainer`] yet.)
        label_names (`List[str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
285
            The list of keys in your dictionary of inputs that correspond to the labels.
Sylvain Gugger's avatar
Sylvain Gugger committed
286

Sylvain Gugger's avatar
Sylvain Gugger committed
287
288
            Will eventually default to `["labels"]` except if the model used is one of the `XxxForQuestionAnswering` in
            which case it will default to `["start_positions", "end_positions"]`.
289
        load_best_model_at_end (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
290
            Whether or not to load the best model found during training at the end of training.
291

292
293
            <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
294
295
            When set to `True`, the parameters `save_strategy` needs to be the same as `eval_strategy`, and in the case
            it is "steps", `save_steps` must be a round multiple of `eval_steps`.
296
297

            </Tip>
298

299
300
        metric_for_best_model (`str`, *optional*):
            Use in conjunction with `load_best_model_at_end` to specify the metric to use to compare two different
Sylvain Gugger's avatar
Sylvain Gugger committed
301
302
            models. Must be the name of a metric returned by the evaluation with or without the prefix `"eval_"`. Will
            default to `"loss"` if unspecified and `load_best_model_at_end=True` (to use the evaluation loss).
303

Sylvain Gugger's avatar
Sylvain Gugger committed
304
305
            If you set this value, `greater_is_better` will default to `True`. Don't forget to set it to `False` if
            your metric is better when lower.
306
        greater_is_better (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
307
308
            Use in conjunction with `load_best_model_at_end` and `metric_for_best_model` to specify if better models
            should have a greater metric or not. Will default to:
309

Sylvain Gugger's avatar
Sylvain Gugger committed
310
            - `True` if `metric_for_best_model` is set to a value that isn't `"loss"` or `"eval_loss"`.
311
312
            - `False` if `metric_for_best_model` is not set, or set to `"loss"` or `"eval_loss"`.
        ignore_data_skip (`bool`, *optional*, defaults to `False`):
313
            When resuming training, whether or not to skip the epochs and batches to get the data loading at the same
Sylvain Gugger's avatar
Sylvain Gugger committed
314
315
            stage as in the previous training. If set to `True`, the training will begin faster (as that skipping step
            can take a long time) but will not yield the same results as the interrupted training would have.
316
317
        sharded_ddp (`bool`, `str` or list of [`~trainer_utils.ShardedDDPOption`], *optional*, defaults to `False`):
            Use Sharded DDP training from [FairScale](https://github.com/facebookresearch/fairscale) (in distributed
318
            training only). This is an experimental feature.
319
320
321

            A list of options along the following:

Sylvain Gugger's avatar
Sylvain Gugger committed
322
323
324
325
326
            - `"simple"`: to use first instance of sharded DDP released by fairscale (`ShardedDDP`) similar to ZeRO-2.
            - `"zero_dp_2"`: to use the second instance of sharded DPP released by fairscale (`FullyShardedDDP`) in
              Zero-2 mode (with `reshard_after_forward=False`).
            - `"zero_dp_3"`: to use the second instance of sharded DPP released by fairscale (`FullyShardedDDP`) in
              Zero-3 mode (with `reshard_after_forward=True`).
327
            - `"offload"`: to add ZeRO-offload (only compatible with `"zero_dp_2"` and `"zero_dp_3"`).
328
329

            If a string is passed, it will be split on space. If a bool is passed, it will be converted to an empty
330
331
332
            list for `False` and `["simple"]` for `True`.
        deepspeed (`str` or `dict`, *optional*):
            Use [Deepspeed](https://github.com/microsoft/deepspeed). This is an experimental feature and its API may
333
            evolve in the future. The value is either the location of DeepSpeed json config file (e.g.,
334
335
            `ds_config.json`) or an already loaded json file as a `dict`"
        label_smoothing_factor (`float`, *optional*, defaults to 0.0):
Sylvain Gugger's avatar
Sylvain Gugger committed
336
            The label smoothing factor to use. Zero means no label smoothing, otherwise the underlying onehot-encoded
Sylvain Gugger's avatar
Sylvain Gugger committed
337
338
            labels are changed from 0s and 1s to `label_smoothing_factor/num_labels` and `1 - label_smoothing_factor +
            label_smoothing_factor/num_labels` respectively.
339
        debug (`str` or list of [`~debug_utils.DebugOption`], *optional*, defaults to `""`):
340
341
342
343
            Enable one or more debug features. This is an experimental feature.

            Possible options are:

Sylvain Gugger's avatar
Sylvain Gugger committed
344
345
            - `"underflow_overflow"`: detects overflow in model's input/outputs and reports the last frames that led to
              the event
346
            - `"tpu_metrics_debug"`: print debug metrics on TPU
347
348

            The options should be separated by whitespaces.
349
350
        optim (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_hf"`):
            The optimizer to use: adamw_hf, adamw_torch, adamw_apex_fused, or adafactor.
351
        adafactor (`bool`, *optional*, defaults to `False`):
352
            This argument is deprecated. Use `--optim adafactor` instead.
353
        group_by_length (`bool`, *optional*, defaults to `False`):
JohnnyC08's avatar
JohnnyC08 committed
354
            Whether or not to group together samples of roughly the same length in the training dataset (to minimize
355
            padding applied and be more efficient). Only useful if applying dynamic padding.
356
        length_column_name (`str`, *optional*, defaults to `"length"`):
357
            Column name for precomputed lengths. If the column exists, grouping by length will use these values rather
Sylvain Gugger's avatar
Sylvain Gugger committed
358
359
            than computing them on train startup. Ignored unless `group_by_length` is `True` and the dataset is an
            instance of `Dataset`.
360
361
        report_to (`str` or `List[str]`, *optional*, defaults to `"all"`):
            The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,
Sylvain Gugger's avatar
Sylvain Gugger committed
362
363
            `"comet_ml"`, `"mlflow"`, `"tensorboard"` and `"wandb"`. Use `"all"` to report to all integrations
            installed, `"none"` for no integrations.
364
365
        ddp_find_unused_parameters (`bool`, *optional*):
            When using distributed training, the value of the flag `find_unused_parameters` passed to
Sylvain Gugger's avatar
Sylvain Gugger committed
366
            `DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
367
        ddp_bucket_cap_mb (`int`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
368
            When using distributed training, the value of the flag `bucket_cap_mb` passed to `DistributedDataParallel`.
369
370
371
        dataloader_pin_memory (`bool`, *optional*, defaults to `True`):
            Whether you want to pin memory in data loaders or not. Will default to `True`.
        skip_memory_metrics (`bool`, *optional*, defaults to `True`):
372
373
            Whether to skip adding of memory profiler reports to metrics. This is skipped by default because it slows
            down the training and evaluation speed.
374
        push_to_hub (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
            Whether or not to push the model to the Hub every time the model is saved. If this is activated,
            `output_dir` will begin a git directory synced with the the repo (determined by `hub_model_id`) and the
377
378
            content will be pushed each time a save is triggered (depending on your `save_strategy`). Calling
            [`~Trainer.save_model`] will also trigger a push.
Sylvain Gugger's avatar
Sylvain Gugger committed
379
380
381
382

            <Tip warning={true}>

            If `output_dir` exists, it needs to be a local clone of the repository to which the [`Trainer`] will be
Sylvain Gugger's avatar
Sylvain Gugger committed
383
            pushed.
Sylvain Gugger's avatar
Sylvain Gugger committed
384
385
386

            </Tip>

387
        resume_from_checkpoint (`str`, *optional*):
388
            The path to a folder with a valid checkpoint for your model. This argument is not directly used by
Sylvain Gugger's avatar
Sylvain Gugger committed
389
            [`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example
390
            scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
391
392
        hub_model_id (`str`, *optional*):
            The name of the repository to keep in sync with the local *output_dir*. It can be a simple model ID in
393
            which case the model will be pushed in your namespace. Otherwise it should be the whole repository name,
394
            for instance `"user_name/model"`, which allows you to push to an organization you are a member of with
Sylvain Gugger's avatar
Sylvain Gugger committed
395
396
            `"organization_name/model"`. Will default to `user_name/output_dir_name` with *output_dir_name* being the
            name of `output_dir`.
397

398
399
            Will default to to the name of `output_dir`.
        hub_strategy (`str` or [`~trainer_utils.HubStrategy`], *optional*, defaults to `"every_save"`):
400
401
            Defines the scope of what is pushed to the Hub and when. Possible values are:

Sylvain Gugger's avatar
Sylvain Gugger committed
402
            - `"end"`: push the model, its configuration, the tokenizer (if passed along to the [`Trainer`]) and a
Sylvain Gugger's avatar
Sylvain Gugger committed
403
              draft of a model card when the [`~Trainer.save_model`] method is called.
Sylvain Gugger's avatar
Sylvain Gugger committed
404
405
406
407
408
409
            - `"every_save"`: push the model, its configuration, the tokenizer (if passed along to the [`Trainer`]) and
              a draft of a model card each time there is a model save. The pushes are asynchronous to not block
              training, and in case the save are very frequent, a new push is only attempted if the previous one is
              finished. A last push is made with the final model at the end of training.
            - `"checkpoint"`: like `"every_save"` but the latest checkpoint is also pushed in a subfolder named
              last-checkpoint, allowing you to resume training easily with
410
              `trainer.train(resume_from_checkpoint="last-checkpoint")`.
Sylvain Gugger's avatar
Sylvain Gugger committed
411
412
            - `"all_checkpoints"`: like `"checkpoint"` but all checkpoints are pushed like they appear in the output
              folder (so you will get one checkpoint folder per folder in your final repository)
413

414
        hub_token (`str`, *optional*):
415
            The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with
416
417
            `huggingface-cli login`.
        gradient_checkpointing (`bool`, *optional*, defaults to `False`):
418
            If True, use gradient checkpointing to save memory at the expense of slower backward pass.
419
420
    """

421
    output_dir: str = field(
422
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
423
424
    )
    overwrite_output_dir: bool = field(
425
426
427
        default=False,
        metadata={
            "help": (
428
                "Overwrite the content of the output directory. "
429
430
431
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
432
433
434
    )

    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
435
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
Julien Chaumond's avatar
Julien Chaumond committed
436
    do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."})
437
    evaluation_strategy: IntervalStrategy = field(
438
        default="no",
Sylvain Gugger's avatar
Sylvain Gugger committed
439
        metadata={"help": "The evaluation strategy to use."},
440
    )
441
    prediction_loss_only: bool = field(
Lysandre's avatar
Lysandre committed
442
443
        default=False,
        metadata={"help": "When performing evaluation and predictions, only returns the loss."},
444
    )
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )

    per_gpu_train_batch_size: Optional[int] = field(
        default=None,
        metadata={
            "help": "Deprecated, the use of `--per_device_train_batch_size` is preferred. "
            "Batch size per GPU/TPU core/CPU for training."
        },
    )
    per_gpu_eval_batch_size: Optional[int] = field(
        default=None,
        metadata={
463
            "help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred. "
464
465
466
467
            "Batch size per GPU/TPU core/CPU for evaluation."
        },
    )

468
    gradient_accumulation_steps: int = field(
469
470
        default=1,
        metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."},
471
    )
472
473
474
475
    eval_accumulation_steps: Optional[int] = field(
        default=None,
        metadata={"help": "Number of predictions steps to accumulate before moving the tensors to the CPU."},
    )
476

477
478
479
480
481
    eval_delay: Optional[float] = field(
        default=0,
        metadata={"help": "Number of epochs or steps to wait for before the first evaluation can be performed, depending on the evaluation_strategy."},
    )            

482
483
484
485
486
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
487
488
489
490
491
492
493
    max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})

    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    max_steps: int = field(
        default=-1,
        metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."},
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
494
495
496
497
    lr_scheduler_type: SchedulerType = field(
        default="linear",
        metadata={"help": "The scheduler type to use."},
    )
498
499
500
    warmup_ratio: float = field(
        default=0.0, metadata={"help": "Linear warmup over warmup_ratio fraction of total steps."}
    )
501
502
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    log_level: Optional[str] = field(
        default="passive",
        metadata={
            "help": "Logger log level to use on the main node. Possible choices are the log levels as strings: 'debug', 'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and lets the application set the level. Defaults to 'passive'.",
            "choices": trainer_log_levels.keys(),
        },
    )
    log_level_replica: Optional[str] = field(
        default="passive",
        metadata={
            "help": "Logger log level to use on replica nodes. Same choices and defaults as ``log_level``",
            "choices": trainer_log_levels.keys(),
        },
    )
    log_on_each_node: bool = field(
        default=True,
        metadata={
            "help": "When doing a multinode distributed training, whether to log once per node or just once on the main node."
        },
    )
523
    logging_dir: Optional[str] = field(default=None, metadata={"help": "Tensorboard log dir."})
524
    logging_strategy: IntervalStrategy = field(
525
526
527
        default="steps",
        metadata={"help": "The logging strategy to use."},
    )
528
    logging_first_step: bool = field(default=False, metadata={"help": "Log the first global_step"})
529
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
530
    logging_nan_inf_filter: bool = field(default=True, metadata={"help": "Filter nan and inf losses for logging."})
531
532
533
534
    save_strategy: IntervalStrategy = field(
        default="steps",
        metadata={"help": "The checkpoint save strategy to use."},
    )
535
536
537
538
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    save_total_limit: Optional[int] = field(
        default=None,
        metadata={
539
            "help": (
540
                "Limit the total amount of checkpoints. "
541
542
                "Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints"
            )
543
544
        },
    )
545
546
547
548
549
550
    save_on_each_node: bool = field(
        default=False,
        metadata={
            "help": "When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on the main one"
        },
    )
Lysandre Debut's avatar
Lysandre Debut committed
551
    no_cuda: bool = field(default=False, metadata={"help": "Do not use CUDA even when it is available"})
552
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
553
    data_seed: int = field(default=None, metadata={"help": "Random seed to be used with data samplers."})
554
555
556
557
558
559
    bf16: bool = field(
        default=False,
        metadata={
            "help": "Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA architecture. This is an experimental API and it may change."
        },
    )
560
561
    fp16: bool = field(
        default=False,
562
        metadata={"help": "Whether to use fp16 (mixed) precision instead of 32-bit"},
563
564
565
566
    )
    fp16_opt_level: str = field(
        default="O1",
        metadata={
567
            "help": (
568
                "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
569
570
                "See details at https://nvidia.github.io/apex/amp.html"
            )
571
572
        },
    )
573
    half_precision_backend: str = field(
574
        default="auto",
575
576
577
578
579
580
581
        metadata={"help": "The backend to be used for half precision.", "choices": ["auto", "amp", "apex"]},
    )
    bf16_full_eval: bool = field(
        default=False,
        metadata={
            "help": "Whether to use full bfloat16 evaluation instead of 32-bit. This is an experimental API and it may change."
        },
582
    )
583
584
    fp16_full_eval: bool = field(
        default=False,
585
        metadata={"help": "Whether to use full float16 evaluation instead of 32-bit"},
586
    )
587
588
589
590
591
592
    tf32: bool = field(
        default=None,
        metadata={
            "help": "Whether to enable tf32 mode, available in Ampere and newer GPU architectures. This is an experimental API and it may change."
        },
    )
593
    local_rank: int = field(default=-1, metadata={"help": "For distributed training: local_rank"})
594
595
596
597
    xpu_backend: str = field(
        default=None,
        metadata={"help": "The backend to be used for distributed training on Intel XPU.", "choices": ["mpi", "ccl"]},
    )
Lysandre Debut's avatar
Lysandre Debut committed
598
599
600
    tpu_num_cores: Optional[int] = field(
        default=None, metadata={"help": "TPU: Number of TPU cores (automatically passed by launcher script)"}
    )
601
602
    tpu_metrics_debug: bool = field(
        default=False,
603
604
605
606
607
608
609
610
611
612
613
        metadata={
            "help": "Deprecated, the use of `--debug tpu_metrics_debug` is preferred. TPU: Whether to print debug metrics"
        },
    )
    debug: str = field(
        default="",
        metadata={
            "help": "Whether or not to enable debug mode. Current options: "
            "`underflow_overflow` (Detect underflow and overflow in activations and weights), "
            "`tpu_metrics_debug` (print debug metrics on TPU)."
        },
614
    )
Lysandre Debut's avatar
Lysandre Debut committed
615

Setu Shah's avatar
Setu Shah committed
616
617
618
    dataloader_drop_last: bool = field(
        default=False, metadata={"help": "Drop the last incomplete batch if it is not divisible by the batch size."}
    )
619
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
Chady Kamar's avatar
Chady Kamar committed
620
621
    dataloader_num_workers: int = field(
        default=0,
Sylvain Gugger's avatar
Sylvain Gugger committed
622
623
624
        metadata={
            "help": "Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process."
        },
Chady Kamar's avatar
Chady Kamar committed
625
    )
Setu Shah's avatar
Setu Shah committed
626

627
628
629
630
631
    past_index: int = field(
        default=-1,
        metadata={"help": "If >=0, uses the corresponding part of the output as the past state for next step."},
    )

632
633
634
    run_name: Optional[str] = field(
        default=None, metadata={"help": "An optional descriptor for the run. Notably used for wandb logging."}
    )
635
636
637
638
    disable_tqdm: Optional[bool] = field(
        default=None, metadata={"help": "Whether or not to disable the tqdm progress bars."}
    )

639
640
641
    remove_unused_columns: Optional[bool] = field(
        default=True, metadata={"help": "Remove columns not required by the model when using an nlp.Dataset."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
642
643
644
645
    label_names: Optional[List[str]] = field(
        default=None, metadata={"help": "The list of keys in your dictionary of inputs that correspond to the labels."}
    )

646
647
648
649
650
651
652
653
654
655
    load_best_model_at_end: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to load the best model found during training at the end of training."},
    )
    metric_for_best_model: Optional[str] = field(
        default=None, metadata={"help": "The metric to use to compare two different models."}
    )
    greater_is_better: Optional[bool] = field(
        default=None, metadata={"help": "Whether the `metric_for_best_model` should be maximized or not."}
    )
656
657
658
659
660
661
    ignore_data_skip: bool = field(
        default=False,
        metadata={
            "help": "When resuming training, whether or not to skip the first epochs and batches to get to the same training data."
        },
    )
662
663
664
665
666
    sharded_ddp: str = field(
        default="",
        metadata={
            "help": "Whether or not to use sharded DDP training (in distributed training only). The base option "
            "should be `simple`, `zero_dp_2` or `zero_dp_3` and you can add CPU-offload to `zero_dp_2` or `zero_dp_3` "
667
668
            "like this: zero_dp_2 offload` or `zero_dp_3 offload`. You can add auto-wrap to `zero_dp_2` or "
            "with the same syntax: zero_dp_2 auto_wrap` or `zero_dp_3 auto_wrap`.",
669
        },
670
    )
671
672
    deepspeed: Optional[str] = field(
        default=None,
673
674
675
        metadata={
            "help": "Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already loaded json file as a dict"
        },
676
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
677
678
679
    label_smoothing_factor: float = field(
        default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."}
    )
680
681
682
683
    optim: OptimizerNames = field(
        default="adamw_hf",
        metadata={"help": "The optimizer to use."},
    )
684
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
685
686
687
688
    group_by_length: bool = field(
        default=False,
        metadata={"help": "Whether or not to group samples of roughly the same length together when batching."},
    )
689
690
691
692
    length_column_name: Optional[str] = field(
        default="length",
        metadata={"help": "Column name with precomputed lengths to use when grouping by length."},
    )
693
694
695
    report_to: Optional[List[str]] = field(
        default=None, metadata={"help": "The list of integrations to report the results and logs to."}
    )
696
697
698
699
700
701
702
    ddp_find_unused_parameters: Optional[bool] = field(
        default=None,
        metadata={
            "help": "When using distributed training, the value of the flag `find_unused_parameters` passed to "
            "`DistributedDataParallel`."
        },
    )
703
704
705
706
707
708
709
    ddp_bucket_cap_mb: Optional[int] = field(
        default=None,
        metadata={
            "help": "When using distributed training, the value of the flag `bucket_cap_mb` passed to "
            "`DistributedDataParallel`."
        },
    )
710
711
712
    dataloader_pin_memory: bool = field(
        default=True, metadata={"help": "Whether or not to pin memory for DataLoader."}
    )
713
    skip_memory_metrics: bool = field(
714
        default=True, metadata={"help": "Whether or not to skip adding of memory profiler reports to metrics."}
715
    )
716
717
718
    use_legacy_prediction_loop: bool = field(
        default=False, metadata={"help": "Whether or not to use the legacy prediction_loop in the Trainer."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
719
720
721
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
722
723
724
725
    resume_from_checkpoint: Optional[str] = field(
        default=None,
        metadata={"help": "The path to a folder with a valid checkpoint for your model."},
    )
726
727
728
    hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
    )
729
730
731
732
    hub_strategy: HubStrategy = field(
        default="every_save",
        metadata={"help": "The hub strategy to use when `--push_to_hub` is activated."},
    )
733
    hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
734
735
736
737
738
739
    gradient_checkpointing: bool = field(
        default=False,
        metadata={
            "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
        },
    )
740
    # Deprecated arguments
741
742
743
744
    fp16_backend: str = field(
        default="auto",
        metadata={"help": "Deprecated. Use half_precision_backend instead", "choices": ["auto", "amp", "apex"]},
    )
745
746
747
748
749
750
751
    push_to_hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to which push the `Trainer`."}
    )
    push_to_hub_organization: str = field(
        default=None, metadata={"help": "The name of the organization in with to which push the `Trainer`."}
    )
    push_to_hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
752
    _n_gpu: int = field(init=False, repr=False, default=-1)
Sylvain Gugger's avatar
Sylvain Gugger committed
753
754
755
756
    mp_parameters: str = field(
        default="",
        metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in Trainer"},
    )
757

Sylvain Gugger's avatar
Sylvain Gugger committed
758
    def __post_init__(self):
759
760
761
762
763
764
        # Handle --use_env option in torch.distributed.launch (local_rank not passed as an arg then).
        # This needs to happen before any call to self.device or self.n_gpu.
        env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
        if env_local_rank != -1 and env_local_rank != self.local_rank:
            self.local_rank = env_local_rank

765
        # convert to int
766
        self.log_level = trainer_log_levels[self.log_level]
767
        self.log_level_replica = trainer_log_levels[self.log_level_replica]
768

769
770
771
772
773
        # expand paths, if not os.makedirs("~/bar") will make directory
        # in the current directory instead of the actual home
        # 聽see https://github.com/huggingface/transformers/issues/10628
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)
774
775
        if self.logging_dir is None and self.output_dir is not None:
            self.logging_dir = os.path.join(self.output_dir, default_logdir())
776
777
778
        if self.logging_dir is not None:
            self.logging_dir = os.path.expanduser(self.logging_dir)

Sylvain Gugger's avatar
Sylvain Gugger committed
779
780
        if self.disable_tqdm is None:
            self.disable_tqdm = logger.getEffectiveLevel() > logging.WARN
781
782
783
784
785
786

        if isinstance(self.evaluation_strategy, EvaluationStrategy):
            warnings.warn(
                "using `EvaluationStrategy` for `evaluation_strategy` is deprecated and will be removed in version 5 of 馃 Transformers. Use `IntervalStrategy` instead",
                FutureWarning,
            )
787
788
            # Go back to the underlying string or we won't be able to instantiate `IntervalStrategy` on it.
            self.evaluation_strategy = self.evaluation_strategy.value
789
790
791
792

        self.evaluation_strategy = IntervalStrategy(self.evaluation_strategy)
        self.logging_strategy = IntervalStrategy(self.logging_strategy)
        self.save_strategy = IntervalStrategy(self.save_strategy)
793
        self.hub_strategy = HubStrategy(self.hub_strategy)
794

Sylvain Gugger's avatar
Sylvain Gugger committed
795
        self.lr_scheduler_type = SchedulerType(self.lr_scheduler_type)
796
        if self.do_eval is False and self.evaluation_strategy != IntervalStrategy.NO:
797
            self.do_eval = True
798
799
800
801
802
803
804
805
806
807
808
809
810
811

        # eval_steps has to be defined and non-zero, fallbacks to logging_steps if the latter is non-zero
        if self.evaluation_strategy == IntervalStrategy.STEPS and (self.eval_steps is None or self.eval_steps == 0):
            if self.logging_steps > 0:
                logger.info(f"using `logging_steps` to initialize `eval_steps` to {self.logging_steps}")
                self.eval_steps = self.logging_steps
            else:
                raise ValueError(
                    f"evaluation strategy {self.evaluation_strategy} requires either non-zero --eval_steps or --logging_steps"
                )

        # logging_steps must be non-zero for logging_strategy that is other than 'no'
        if self.logging_strategy == IntervalStrategy.STEPS and self.logging_steps == 0:
            raise ValueError(f"logging strategy {self.logging_strategy} requires non-zero --logging_steps")
812

813
814
815
816
817
818
819
820
821
822
823
824
825
        # Sanity checks for load_best_model_at_end: we require save and eval strategies to be compatible.
        if self.load_best_model_at_end:
            if self.evaluation_strategy != self.save_strategy:
                raise ValueError(
                    "--load_best_model_at_end requires the save and eval strategy to match, but found\n- Evaluation "
                    f"strategy: {self.evaluation_strategy}\n- Save strategy: {self.save_strategy}"
                )
            if self.evaluation_strategy == IntervalStrategy.STEPS and self.save_steps % self.eval_steps != 0:
                raise ValueError(
                    "--load_best_model_at_end requires the saving steps to be a round multiple of the evaluation "
                    f"steps, but found {self.save_steps}, which is not a round multiple of {self.eval_steps}."
                )

826
827
828
829
        if self.load_best_model_at_end and self.metric_for_best_model is None:
            self.metric_for_best_model = "loss"
        if self.greater_is_better is None and self.metric_for_best_model is not None:
            self.greater_is_better = self.metric_for_best_model not in ["loss", "eval_loss"]
830
831
        if self.run_name is None:
            self.run_name = self.output_dir
832

833
834
835
836
837
838
839
        if self.fp16_backend and self.fp16_backend != "auto":
            warnings.warn(
                "`fp16_backend` is deprecated and will be removed in version 5 of 馃 Transformers. Use `half_precision_backend` instead",
                FutureWarning,
            )
            self.half_precision_backend = self.fp16_backend

Stas Bekman's avatar
Stas Bekman committed
840
841
842
        if (self.bf16 or self.bf16_full_eval) and not is_torch_bf16_available():
            raise ValueError("Your setup doesn't support bf16. You need Ampere GPU, torch>=1.10, cuda>=11.0")

843
844
845
846
847
848
849
850
851
        if self.fp16 and self.bf16:
            raise ValueError("At most one of fp16 and bf16 can be True, but not both")
        if self.bf16:
            if self.half_precision_backend == "apex":
                raise ValueError(
                    " `--half_precision_backend apex`: bf16 is not supported by apex. Use `--half_precision_backend amp` instead"
                )
            if not (self.sharded_ddp == "" or not self.sharded_ddp):
                raise ValueError("sharded_ddp is not supported with bf16")
852
853
854
855
856
857
858
859
860

        self.optim = OptimizerNames(self.optim)
        if self.adafactor:
            warnings.warn(
                "`--adafactor` is deprecated and will be removed in version 5 of 馃 Transformers. Use `--optim adafactor` instead",
                FutureWarning,
            )
            self.optim = OptimizerNames.ADAFACTOR

861
862
        if (
            is_torch_available()
863
864
            and (self.device.type != "cuda")
            and not (self.device.type == "xla" and "GPU_NUM_DEVICES" in os.environ)
865
866
            and (self.fp16 or self.fp16_full_eval or self.bf16 or self.bf16_full_eval)
        ):
867
            raise ValueError(
868
                "Mixed precision training with AMP or APEX (`--fp16` or `--bf16`) and half precision evaluation (`--fp16_full_eval` or `--bf16_full_eval`) can only be used on CUDA devices."
869
            )
870

871
872
873
874
875
876
877
878
879
880
881
        if is_torch_available() and self.tf32 is not None:
            if self.tf32:
                if is_torch_tf32_available():
                    torch.backends.cuda.matmul.allow_tf32 = True
                else:
                    raise ValueError("--tf32 requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.7")
            else:
                if is_torch_tf32_available():
                    torch.backends.cuda.matmul.allow_tf32 = False
                # no need to assert on else

882
        if self.report_to is None:
883
884
885
886
887
888
889
            logger.info(
                "The default value for the training argument `--report_to` will change in v5 (from all installed "
                "integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as "
                "now. You should start updating your code and make this info disappear :-)."
            )
            self.report_to = "all"
        if self.report_to == "all" or self.report_to == ["all"]:
890
891
892
893
            # Import at runtime to avoid a circular import.
            from .integrations import get_available_reporting_integrations

            self.report_to = get_available_reporting_integrations()
894
895
896
897
        elif self.report_to == "none" or self.report_to == ["none"]:
            self.report_to = []
        elif not isinstance(self.report_to, list):
            self.report_to = [self.report_to]
898

899
900
901
902
903
904
905
        if self.warmup_ratio < 0 or self.warmup_ratio > 1:
            raise ValueError("warmup_ratio must lie in range [0,1]")
        elif self.warmup_ratio > 0 and self.warmup_steps > 0:
            logger.info(
                "Both warmup_ratio and warmup_steps given, warmup_steps will override any effect of warmup_ratio during training"
            )

906
907
908
909
910
911
912
913
914
        if isinstance(self.sharded_ddp, bool):
            self.sharded_ddp = "simple" if self.sharded_ddp else ""
        if isinstance(self.sharded_ddp, str):
            self.sharded_ddp = [ShardedDDPOption(s) for s in self.sharded_ddp.split()]
        if self.sharded_ddp == [ShardedDDPOption.OFFLOAD]:
            raise ValueError(
                "`--sharded_ddp offload` can't work on its own. It needs to be added to `--sharded_ddp zero_dp_2` or "
                '`--sharded_ddp zero_dp_3`. For example, `--sharded_ddp "zero_dp_2 offload"`.'
            )
915
        elif len(self.sharded_ddp) > 1 and ShardedDDPOption.SIMPLE in self.sharded_ddp:
916
917
918
919
            raise ValueError("`--sharded_ddp simple` is not compatible with any other option.")
        elif ShardedDDPOption.ZERO_DP_2 in self.sharded_ddp and ShardedDDPOption.ZERO_DP_3 in self.sharded_ddp:
            raise ValueError("`--sharded_ddp zero_dp_2` is not compatible with `--sharded_ddp zero_dp_3`.")

920
921
922
923
924
925
926
927
928
929
        if self.tpu_metrics_debug:
            warnings.warn(
                "using `--tpu_metrics_debug` is deprecated and will be removed in version 5 of 馃 Transformers. Use `--debug tpu_metrics_debug` instead",
                FutureWarning,
            )
            self.debug += " tpu_metrics_debug"
            self.tpu_metrics_debug = False
        if isinstance(self.debug, str):
            self.debug = [DebugOption(s) for s in self.debug.split()]

930
931
932
        if self.deepspeed:
            # - must be run very last in arg parsing, since it will use a lot of these settings.
            # - must be run before the model is created.
933
            from transformers.deepspeed import HfTrainerDeepSpeedConfig
934

935
936
937
938
            # will be used later by the Trainer
            # note: leave self.deepspeed unmodified in case a user relies on it not to be modified)
            self.hf_deepspeed_config = HfTrainerDeepSpeedConfig(self.deepspeed)
            self.hf_deepspeed_config.trainer_config_process(self)
939

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
        if self.push_to_hub_token is not None:
            warnings.warn(
                "`--push_to_hub_token` is deprecated and will be removed in version 5 of 馃 Transformers. Use "
                "`--hub_token` instead.",
                FutureWarning,
            )
            self.hub_token = self.push_to_hub_token

        if self.push_to_hub_model_id is not None:
            self.hub_model_id = get_full_repo_name(
                self.push_to_hub_model_id, organization=self.push_to_hub_organization, token=self.hub_token
            )
            if self.push_to_hub_organization is not None:
                warnings.warn(
                    "`--push_to_hub_model_id` and `--push_to_hub_organization` are deprecated and will be removed in "
                    "version 5 of 馃 Transformers. Use `--hub_model_id` instead and pass the full repo name to this "
                    f"argument (in this case {self.hub_model_id}).",
                    FutureWarning,
                )
            else:
                warnings.warn(
                    "`--push_to_hub_model_id` is deprecated and will be removed in version 5 of 馃 Transformers. Use "
                    "`--hub_model_id` instead and pass the full repo name to this argument (in this case "
                    f"{self.hub_model_id}).",
                    FutureWarning,
                )
        elif self.push_to_hub_organization is not None:
            self.hub_model_id = f"{self.push_to_hub_organization}/{Path(self.output_dir).name}"
            warnings.warn(
                "`--push_to_hub_organization` is deprecated and will be removed in version 5 of 馃 Transformers. Use "
                "`--hub_model_id` instead and pass the full repo name to this argument (in this case "
                f"{self.hub_model_id}).",
                FutureWarning,
            )
974

975
    def __str__(self):
976
        self_as_dict = asdict(self)
977
978
979

        # Remove deprecated arguments. That code should be removed once
        # those deprecated arguments are removed from TrainingArguments. (TODO: v5)
980
981
        del self_as_dict["per_gpu_train_batch_size"]
        del self_as_dict["per_gpu_eval_batch_size"]
982

983
984
        self_as_dict = {k: f"<{k.upper()}>" if k.endswith("_token") else v for k, v in self_as_dict.items()}

985
986
987
988
        attrs_as_str = [f"{k}={v},\n" for k, v in sorted(self_as_dict.items())]
        return f"{self.__class__.__name__}(\n{''.join(attrs_as_str)})"

    __repr__ = __str__
989

Julien Chaumond's avatar
Julien Chaumond committed
990
991
    @property
    def train_batch_size(self) -> int:
992
        """
993
        The actual batch size for training (may differ from `per_gpu_train_batch_size` in distributed training).
994
        """
995
996
997
998
999
1000
        if self.per_gpu_train_batch_size:
            logger.warning(
                "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future "
                "version. Using `--per_device_train_batch_size` is preferred."
            )
        per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size
1001
        train_batch_size = per_device_batch_size * max(1, self.n_gpu)
1002
        return train_batch_size
Julien Chaumond's avatar
Julien Chaumond committed
1003
1004
1005

    @property
    def eval_batch_size(self) -> int:
1006
        """
1007
        The actual batch size for evaluation (may differ from `per_gpu_eval_batch_size` in distributed training).
1008
        """
1009
1010
1011
1012
1013
1014
        if self.per_gpu_eval_batch_size:
            logger.warning(
                "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future "
                "version. Using `--per_device_eval_batch_size` is preferred."
            )
        per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size
1015
        eval_batch_size = per_device_batch_size * max(1, self.n_gpu)
1016
        return eval_batch_size
Julien Chaumond's avatar
Julien Chaumond committed
1017
1018
1019

    @cached_property
    @torch_required
1020
    def _setup_devices(self) -> "torch.device":
Julien Chaumond's avatar
Julien Chaumond committed
1021
1022
1023
        logger.info("PyTorch: setting up devices")
        if self.no_cuda:
            device = torch.device("cpu")
1024
            self._n_gpu = 0
1025
1026
1027
1028
1029
1030
1031
1032
            if self.local_rank != -1:
                # Initializes distributed backend for cpu
                if self.xpu_backend not in ("mpi", "ccl"):
                    raise ValueError(
                        "CPU distributed training backend is not properly set. "
                        "Please set '--xpu_backend' to either 'mpi' or 'ccl'."
                    )
                torch.distributed.init_process_group(backend=self.xpu_backend)
1033
        elif is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
1034
            device = xm.xla_device()
1035
            self._n_gpu = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
1036
1037
1038
1039
1040
        elif is_sagemaker_mp_enabled():
            local_rank = smp.local_rank()
            device = torch.device("cuda", local_rank)
            self._n_gpu = 1
        elif is_sagemaker_dp_enabled():
1041
1042
            sm_dist.init_process_group()
            self.local_rank = sm_dist.get_local_rank()
Sylvain Gugger's avatar
Sylvain Gugger committed
1043
1044
            device = torch.device("cuda", self.local_rank)
            self._n_gpu = 1
1045
        elif self.deepspeed:
1046
            # deepspeed inits torch.distributed internally
1047
            from .deepspeed import is_deepspeed_available
1048
1049
1050
1051
1052
1053

            if not is_deepspeed_available():
                raise ImportError("--deepspeed requires deepspeed: `pip install deepspeed`.")
            import deepspeed

            deepspeed.init_distributed()
1054
1055
1056
1057
1058
1059

            # workaround for setups like notebooks where the launcher can't be used,
            # but deepspeed requires a dist env.
            # env LOCAL_RANK could be set manually by the user, or via init_distributed if mpi4py is installed
            self.local_rank = int(os.environ.get("LOCAL_RANK", "-1"))

1060
1061
            device = torch.device("cuda", self.local_rank)
            self._n_gpu = 1
Julien Chaumond's avatar
Julien Chaumond committed
1062
1063
1064
        elif self.local_rank == -1:
            # if n_gpu is > 1 we'll use nn.DataParallel.
            # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
1065
1066
1067
1068
1069
            # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
            # trigger an error that a device index is missing. Index 0 takes into account the
            # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
            # will use the first GPU in that env, i.e. GPU#1
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
1070
1071
            # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
            # the default value.
1072
            self._n_gpu = torch.cuda.device_count()
Julien Chaumond's avatar
Julien Chaumond committed
1073
1074
        else:
            # Here, we'll use torch.distributed.
1075
            # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
1076
            torch.distributed.init_process_group(backend="nccl")
Julien Chaumond's avatar
Julien Chaumond committed
1077
            device = torch.device("cuda", self.local_rank)
1078
            self._n_gpu = 1
1079
1080
1081
1082

        if device.type == "cuda":
            torch.cuda.set_device(device)

1083
        return device
Julien Chaumond's avatar
Julien Chaumond committed
1084
1085
1086
1087

    @property
    @torch_required
    def device(self) -> "torch.device":
1088
1089
1090
        """
        The device used by this process.
        """
1091
        return self._setup_devices
Julien Chaumond's avatar
Julien Chaumond committed
1092
1093
1094
1095

    @property
    @torch_required
    def n_gpu(self):
1096
1097
1098
1099
1100
1101
1102
        """
        The number of GPUs used by this process.

        Note:
            This will only be greater than one when you have multiple GPUs available but are not using distributed
            training. For distributed training, it will always be 1.
        """
1103
1104
1105
        # Make sure `self._n_gpu` is properly setup.
        _ = self._setup_devices
        return self._n_gpu
Julien Chaumond's avatar
Julien Chaumond committed
1106

1107
1108
1109
1110
1111
1112
    @property
    @torch_required
    def parallel_mode(self):
        """
        The current mode used for parallelism if multiple GPUs/TPU cores are available. One of:

1113
1114
1115
1116
1117
        - `ParallelMode.NOT_PARALLEL`: no parallelism (CPU or one GPU).
        - `ParallelMode.NOT_DISTRIBUTED`: several GPUs in one single process (uses `torch.nn.DataParallel`).
        - `ParallelMode.DISTRIBUTED`: several GPUs, each having its own process (uses
          `torch.nn.DistributedDataParallel`).
        - `ParallelMode.TPU`: several TPU cores.
1118
1119
1120
        """
        if is_torch_tpu_available():
            return ParallelMode.TPU
Sylvain Gugger's avatar
Sylvain Gugger committed
1121
1122
1123
1124
        elif is_sagemaker_mp_enabled():
            return ParallelMode.SAGEMAKER_MODEL_PARALLEL
        elif is_sagemaker_dp_enabled():
            return ParallelMode.SAGEMAKER_DATA_PARALLEL
1125
1126
1127
1128
1129
1130
1131
        elif self.local_rank != -1:
            return ParallelMode.DISTRIBUTED
        elif self.n_gpu > 1:
            return ParallelMode.NOT_DISTRIBUTED
        else:
            return ParallelMode.NOT_PARALLEL

1132
1133
1134
1135
1136
1137
1138
1139
    @property
    @torch_required
    def world_size(self):
        """
        The number of processes used in parallel.
        """
        if is_torch_tpu_available():
            return xm.xrt_world_size()
Sylvain Gugger's avatar
Sylvain Gugger committed
1140
        elif is_sagemaker_mp_enabled():
1141
            return smp.dp_size() if not smp.state.cfg.prescaled_batch else smp.rdp_size()
Sylvain Gugger's avatar
Sylvain Gugger committed
1142
        elif is_sagemaker_dp_enabled():
1143
1144
1145
1146
1147
            return sm_dist.get_world_size()
        elif self.local_rank != -1:
            return torch.distributed.get_world_size()
        return 1

1148
1149
1150
1151
    @property
    @torch_required
    def process_index(self):
        """
1152
        The index of the current process used.
1153
1154
1155
        """
        if is_torch_tpu_available():
            return xm.get_ordinal()
Sylvain Gugger's avatar
Sylvain Gugger committed
1156
        elif is_sagemaker_mp_enabled():
1157
            return smp.dp_rank() if not smp.state.cfg.prescaled_batch else smp.rdp_rank()
Sylvain Gugger's avatar
Sylvain Gugger committed
1158
        elif is_sagemaker_dp_enabled():
1159
1160
1161
1162
1163
            return sm_dist.get_rank()
        elif self.local_rank != -1:
            return torch.distributed.get_rank()
        return 0

1164
1165
1166
1167
1168
1169
1170
    @property
    @torch_required
    def local_process_index(self):
        """
        The index of the local process used.
        """
        if is_torch_tpu_available():
1171
            return xm.get_local_ordinal()
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
        elif is_sagemaker_mp_enabled():
            return smp.local_rank()
        elif is_sagemaker_dp_enabled():
            return sm_dist.get_rank()
        elif self.local_rank != -1:
            return self.local_rank
        return 0

    @property
    def should_log(self):
        """
        Whether or not the current process should produce log.
        """
        if self.log_on_each_node:
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
            return self.local_process_index == 0
        else:
            if is_sagemaker_mp_enabled():
                return smp.rank() == 0
            else:
                return self.process_index == 0

    @property
    def should_save(self):
        """
        Whether or not the current process should write to disk, e.g., to save models and checkpoints.
        """
        if self.save_on_each_node:
1199
1200
1201
1202
1203
1204
1205
            return self.local_process_index == 0
        else:
            if is_sagemaker_mp_enabled():
                return smp.rank() == 0
            else:
                return self.process_index == 0

1206
1207
1208
1209
1210
    def get_process_log_level(self):
        """
        Returns the log level to be used depending on whether this process is the main process of node 0, main process
        of node non-0, or a non-main process.

1211
        For the main process the log level defaults to `logging.INFO` unless overridden by `log_level` argument.
1212

Sylvain Gugger's avatar
Sylvain Gugger committed
1213
1214
        For the replica processes the log level defaults to `logging.WARNING` unless overridden by `log_level_replica`
        argument.
1215

Sylvain Gugger's avatar
Sylvain Gugger committed
1216
        The choice between the main and replica process settings is made according to the return value of `should_log`.
1217
1218
        """

1219
1220
1221
1222
        log_level_main_node = logging.INFO if self.log_level == -1 else self.log_level
        log_level_replica_node = logging.WARNING if self.log_level_replica == -1 else self.log_level_replica
        return log_level_main_node if self.should_log else log_level_replica_node

1223
1224
1225
1226
1227
    @property
    def place_model_on_device(self):
        """
        Can be subclassed and overridden for some specific integrations.
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1228
        return not is_sagemaker_mp_enabled()
1229

Sylvain Gugger's avatar
Sylvain Gugger committed
1230
1231
1232
1233
1234
    @property
    def _no_sync_in_gradient_accumulation(self):
        """
        Whether or not to use no_sync for the gradients when doing gradient accumulation.
        """
1235
        return not (self.deepspeed or is_sagemaker_dp_enabled() or is_sagemaker_mp_enabled())
Sylvain Gugger's avatar
Sylvain Gugger committed
1236

1237
1238
1239
    @contextlib.contextmanager
    def main_process_first(self, local=True, desc="work"):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1240
1241
        A context manager for torch distributed environment where on needs to do something on the main process, while
        blocking replicas, and when it's finished releasing the replicas.
1242

Sylvain Gugger's avatar
Sylvain Gugger committed
1243
1244
1245
        One such use is for `datasets`'s `map` feature which to be efficient should be run once on the main process,
        which upon completion saves a cached version of results and which then automatically gets loaded by the
        replicas.
1246
1247

        Args:
1248
            local (`bool`, *optional*, defaults to `True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1249
1250
                if `True` first means process of rank 0 of each node if `False` first means process of rank 0 of node
                rank 0 In multi-node environment with a shared filesystem you most likely will want to use
1251
                `local=False` so that only the main process of the first node will do the processing. If however, the
1252
1253
                filesystem is not shared, then the main process of each node will need to do the processing, which is
                the default behavior.
1254
            desc (`str`, *optional*, defaults to `"work"`):
1255
1256
1257
1258
                a work description to be used in debug logs

        """
        if is_torch_available() and self.world_size > 1:
1259
            main_process_desc = "main process"
1260
1261
1262
            if local:
                is_main_process = self.local_process_index == 0
                main_process_desc = "main local process"
1263
1264
            elif is_sagemaker_mp_enabled():
                is_main_process = smp.rank() == 0
1265
1266
1267
1268
1269
1270
1271
            else:
                is_main_process = self.process_index == 0

            try:
                if not is_main_process:
                    # tell all replicas to wait
                    logger.debug(f"{self.process_index}: waiting for the {main_process_desc} to perform {desc}")
1272
1273
                    if is_torch_tpu_available():
                        xm.rendezvous(desc)
1274
                    elif is_sagemaker_dp_enabled():
1275
                        sm_dist.barrier()
1276
1277
                    else:
                        torch.distributed.barrier()
1278
1279
1280
1281
1282
                yield
            finally:
                if is_main_process:
                    # the wait is over
                    logger.debug(f"{self.process_index}: {main_process_desc} completed {desc}, releasing all replicas")
1283
1284
                    if is_torch_tpu_available():
                        xm.rendezvous(desc)
1285
                    elif is_sagemaker_dp_enabled():
1286
                        sm_dist.barrier()
1287
1288
                    else:
                        torch.distributed.barrier()
1289
1290
1291
        else:
            yield

1292
1293
1294
1295
1296
    def get_warmup_steps(self, num_training_steps: int):
        """
        Get number of steps used for a linear warmup.
        """
        warmup_steps = (
1297
            self.warmup_steps if self.warmup_steps > 0 else math.ceil(num_training_steps * self.warmup_ratio)
1298
1299
1300
        )
        return warmup_steps

1301
1302
    def to_dict(self):
        """
1303
1304
        Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
        the token values by removing their value.
1305
        """
1306
        d = asdict(self)
1307
1308
1309
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
1310
1311
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
1312
1313
            if k.endswith("_token"):
                d[k] = f"<{k.upper()}>"
1314
1315
        return d

Julien Chaumond's avatar
Julien Chaumond committed
1316
1317
1318
1319
    def to_json_string(self):
        """
        Serializes this instance to a JSON string.
        """
1320
        return json.dumps(self.to_dict(), indent=2)
1321
1322
1323
1324
1325

    def to_sanitized_dict(self) -> Dict[str, Any]:
        """
        Sanitized serialization to use with TensorBoard鈥檚 hparams
        """
1326
        d = self.to_dict()
1327
1328
        d = {**d, **{"train_batch_size": self.train_batch_size, "eval_batch_size": self.eval_batch_size}}

1329
1330
1331
        valid_types = [bool, int, float, str]
        if is_torch_available():
            valid_types.append(torch.Tensor)
1332

1333
        return {k: v if type(v) in valid_types else str(v) for k, v in d.items()}
1334
1335
1336
1337
1338
1339


class ParallelMode(Enum):
    NOT_PARALLEL = "not_parallel"
    NOT_DISTRIBUTED = "not_distributed"
    DISTRIBUTED = "distributed"
Sylvain Gugger's avatar
Sylvain Gugger committed
1340
1341
    SAGEMAKER_MODEL_PARALLEL = "sagemaker_model_parallel"
    SAGEMAKER_DATA_PARALLEL = "sagemaker_data_parallel"
1342
    TPU = "tpu"