training_args.py 65 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
Julien Chaumond's avatar
Julien Chaumond committed
16
import json
17
import math
Julien Plu's avatar
Julien Plu committed
18
import os
19
import warnings
20
from dataclasses import asdict, dataclass, field
21
from enum import Enum
22
from pathlib import Path
23
from typing import Any, Dict, List, Optional
Julien Chaumond's avatar
Julien Chaumond committed
24

25
from .debug_utils import DebugOption
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
from .file_utils import (
    cached_property,
28
    get_full_repo_name,
Sylvain Gugger's avatar
Sylvain Gugger committed
29
30
    is_sagemaker_dp_enabled,
    is_sagemaker_mp_enabled,
Sylvain Gugger's avatar
Sylvain Gugger committed
31
    is_torch_available,
32
    is_torch_tf32_available,
Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
35
    is_torch_tpu_available,
    torch_required,
)
36
from .trainer_utils import EvaluationStrategy, HubStrategy, IntervalStrategy, SchedulerType, ShardedDDPOption
Lysandre Debut's avatar
Lysandre Debut committed
37
from .utils import logging
Julien Chaumond's avatar
Julien Chaumond committed
38
39
40
41
42


if is_torch_available():
    import torch

43
if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
44
45
    import torch_xla.core.xla_model as xm

Sylvain Gugger's avatar
Sylvain Gugger committed
46
if is_sagemaker_dp_enabled():
47
48
    import smdistributed.dataparallel.torch.distributed as sm_dist

Sylvain Gugger's avatar
Sylvain Gugger committed
49
50
51
52
53
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp

    smp.init()

Lysandre Debut's avatar
Lysandre Debut committed
54

Lysandre Debut's avatar
Lysandre Debut committed
55
logger = logging.get_logger(__name__)
56
57
log_levels = logging.get_log_levels_dict().copy()
trainer_log_levels = dict(**log_levels, passive=-1)
58
59


Julien Plu's avatar
Julien Plu committed
60
61
62
63
64
65
66
67
68
69
70
def default_logdir() -> str:
    """
    Same default as PyTorch
    """
    import socket
    from datetime import datetime

    current_time = datetime.now().strftime("%b%d_%H-%M-%S")
    return os.path.join("runs", current_time + "_" + socket.gethostname())


71
72
73
@dataclass
class TrainingArguments:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
74
75
    TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop
    itself**.
76

77
78
79
    Using :class:`~transformers.HfArgumentParser` we can turn this class into `argparse
    <https://docs.python.org/3/library/argparse.html#module-argparse>`__ arguments that can be specified on the command
    line.
80
81
82
83
84
85
86
87

    Parameters:
        output_dir (:obj:`str`):
            The output directory where the model predictions and checkpoints will be written.
        overwrite_output_dir (:obj:`bool`, `optional`, defaults to :obj:`False`):
            If :obj:`True`, overwrite the content of the output directory. Use this to continue training if
            :obj:`output_dir` points to a checkpoint directory.
        do_train (:obj:`bool`, `optional`, defaults to :obj:`False`):
88
89
90
            Whether to run training or not. This argument is not directly used by :class:`~transformers.Trainer`, it's
            intended to be used by your training/evaluation scripts instead. See the `example scripts
            <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details.
91
        do_eval (:obj:`bool`, `optional`):
92
93
94
95
96
            Whether to run evaluation on the validation set or not. Will be set to :obj:`True` if
            :obj:`evaluation_strategy` is different from :obj:`"no"`. This argument is not directly used by
            :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
            the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
            details.
97
        do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`):
98
99
100
101
            Whether to run predictions on the test set or not. This argument is not directly used by
            :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
            the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
            details.
102
        evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"no"`):
103
104
105
106
107
108
            The evaluation strategy to adopt during training. Possible values are:

                * :obj:`"no"`: No evaluation is done during training.
                * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`.
                * :obj:`"epoch"`: Evaluation is done at the end of each epoch.

109
        prediction_loss_only (:obj:`bool`, `optional`, defaults to `False`):
110
            When performing evaluation and generating predictions, only returns the loss.
111
112
113
114
        per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8):
            The batch size per GPU/TPU core/CPU for training.
        per_device_eval_batch_size (:obj:`int`, `optional`, defaults to 8):
            The batch size per GPU/TPU core/CPU for evaluation.
115
        gradient_accumulation_steps (:obj:`int`, `optional`, defaults to 1):
116
            Number of updates steps to accumulate the gradients for, before performing a backward/update pass.
117
118
119
120
121
122

            .. warning::

                When using gradient accumulation, one step is counted as one step with backward pass. Therefore,
                logging, evaluation, save will be conducted every ``gradient_accumulation_steps * xxx_step`` training
                examples.
123
124
125
126
        eval_accumulation_steps (:obj:`int`, `optional`):
            Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If
            left unset, the whole predictions are accumulated on GPU/TPU before being moved to the CPU (faster but
            requires more memory).
127
        learning_rate (:obj:`float`, `optional`, defaults to 5e-5):
128
            The initial learning rate for :class:`~transformers.AdamW` optimizer.
129
        weight_decay (:obj:`float`, `optional`, defaults to 0):
Sylvain Gugger's avatar
Sylvain Gugger committed
130
            The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in
131
            :class:`~transformers.AdamW` optimizer.
132
        adam_beta1 (:obj:`float`, `optional`, defaults to 0.9):
133
            The beta1 hyperparameter for the :class:`~transformers.AdamW` optimizer.
134
        adam_beta2 (:obj:`float`, `optional`, defaults to 0.999):
135
            The beta2 hyperparameter for the :class:`~transformers.AdamW` optimizer.
136
        adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8):
137
            The epsilon hyperparameter for the :class:`~transformers.AdamW` optimizer.
138
139
140
        max_grad_norm (:obj:`float`, `optional`, defaults to 1.0):
            Maximum gradient norm (for gradient clipping).
        num_train_epochs(:obj:`float`, `optional`, defaults to 3.0):
Sylvain Gugger's avatar
Sylvain Gugger committed
141
142
            Total number of training epochs to perform (if not an integer, will perform the decimal part percents of
            the last epoch before stopping training).
143
144
        max_steps (:obj:`int`, `optional`, defaults to -1):
            If set to a positive number, the total number of training steps to perform. Overrides
145
146
            :obj:`num_train_epochs`. In case of using a finite iterable dataset the training may stop before reaching
            the set number of steps when all data is exhausted
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
        lr_scheduler_type (:obj:`str` or :class:`~transformers.SchedulerType`, `optional`, defaults to :obj:`"linear"`):
            The scheduler type to use. See the documentation of :class:`~transformers.SchedulerType` for all possible
            values.
150
151
        warmup_ratio (:obj:`float`, `optional`, defaults to 0.0):
            Ratio of total training steps used for a linear warmup from 0 to :obj:`learning_rate`.
152
        warmup_steps (:obj:`int`, `optional`, defaults to 0):
153
154
            Number of steps used for a linear warmup from 0 to :obj:`learning_rate`. Overrides any effect of
            :obj:`warmup_ratio`.
155
156
157
158
159
160
161
162
163
        log_level (:obj:`str`, `optional`, defaults to ``passive``):
            Logger log level to use on the main process. Possible choices are the log levels as strings: 'debug',
            'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and lets the
            application set the level.
        log_level_replica (:obj:`str`, `optional`, defaults to ``passive``):
            Logger log level to use on replicas. Same choices as ``log_level``"
        log_on_each_node (:obj:`bool`, `optional`, defaults to :obj:`True`):
            In multinode distributed training, whether to log using :obj:`log_level` once per node, or only on the main
            node.
164
        logging_dir (:obj:`str`, `optional`):
165
            `TensorBoard <https://www.tensorflow.org/tensorboard>`__ log directory. Will default to
166
            `output_dir/runs/**CURRENT_DATETIME_HOSTNAME**`.
167
        logging_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"steps"`):
168
169
170
171
172
173
            The logging strategy to adopt during training. Possible values are:

                * :obj:`"no"`: No logging is done during training.
                * :obj:`"epoch"`: Logging is done at the end of each epoch.
                * :obj:`"steps"`: Logging is done every :obj:`logging_steps`.

174
        logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`):
Tiger's avatar
Tiger committed
175
            Whether to log and evaluate the first :obj:`global_step` or not.
176
        logging_steps (:obj:`int`, `optional`, defaults to 500):
177
            Number of update steps between two logs if :obj:`logging_strategy="steps"`.
178
179
180
181
182
183
184
185
186
187
        logging_nan_inf_filter (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to filter :obj:`nan` and :obj:`inf` losses for logging. If set to obj:`True` the loss of every step
            that is :obj:`nan` or :obj:`inf` is filtered and the average loss of the current logging window is taken
            instead.

            .. note::

                :obj:`logging_nan_inf_filter` only influences the logging of loss values, it does not change the
                behavior the gradient is computed or applied to the model.

188
        save_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"steps"`):
189
            The checkpoint save strategy to adopt during training. Possible values are:
190
191
192
193

                * :obj:`"no"`: No save is done during training.
                * :obj:`"epoch"`: Save is done at the end of each epoch.
                * :obj:`"steps"`: Save is done every :obj:`save_steps`.
194
        save_steps (:obj:`int`, `optional`, defaults to 500):
195
            Number of updates steps before two checkpoint saves if :obj:`save_strategy="steps"`.
196
197
198
        save_total_limit (:obj:`int`, `optional`):
            If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in
            :obj:`output_dir`.
199
200
201
202
203
204
        save_on_each_node (:obj:`bool`, `optional`, defaults to :obj:`False`):
            When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on
            the main one.

            This should not be activated when the different nodes use the same storage as the files will be saved with
            the same names for each node.
205
        no_cuda (:obj:`bool`, `optional`, defaults to :obj:`False`):
Alan deLevie's avatar
Alan deLevie committed
206
            Whether to not use CUDA even when it is available or not.
207
        seed (:obj:`int`, `optional`, defaults to 42):
208
209
210
            Random seed that will be set at the beginning of training. To ensure reproducibility across runs, use the
            :func:`~transformers.Trainer.model_init` function to instantiate the model if it has some randomly
            initialized parameters.
211
212
213
        bf16 (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to use bf16 16-bit (mixed) precision training instead of 32-bit training. Requires Ampere or higher
            NVIDIA architecture. This is an experimental API and it may change.
214
        fp16 (:obj:`bool`, `optional`, defaults to :obj:`False`):
215
            Whether to use fp16 16-bit (mixed) precision training instead of 32-bit training.
216
        fp16_opt_level (:obj:`str`, `optional`, defaults to 'O1'):
217
218
            For :obj:`fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details
            on the `Apex documentation <https://nvidia.github.io/apex/amp.html>`__.
219
        fp16_backend (:obj:`str`, `optional`, defaults to :obj:`"auto"`):
220
221
            This argument is deprecated. Use ``half_precision_backend`` instead.
        half_precision_backend (:obj:`str`, `optional`, defaults to :obj:`"auto"`):
222
223
224
            The backend to use for mixed precision training. Must be one of :obj:`"auto"`, :obj:`"amp"` or
            :obj:`"apex"`. :obj:`"auto"` will use AMP or APEX depending on the PyTorch version detected, while the
            other choices will force the requested backend.
225
226
227
        bf16_full_eval (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to use full bfloat16 evaluation instead of 32-bit. This will be faster and save memory but can harm
            metric values. This is an experimental API and it may change.
228
        fp16_full_eval (:obj:`bool`, `optional`, defaults to :obj:`False`):
229
230
            Whether to use full float16 evaluation instead of 32-bit. This will be faster and save memory but can harm
            metric values.
231
232
233
        tf32 (:obj:`bool`, `optional`):
            Whether to enable tf32 mode, available in Ampere and newer GPU architectures. This is an experimental API
            and it may change.
234
        local_rank (:obj:`int`, `optional`, defaults to -1):
235
            Rank of the process during distributed training.
236
237
        xpu_backend (:obj:`str`, `optional`):
            The backend to use for xpu distributed training. Must be one of :obj:`"mpi"` or :obj:`"ccl"`.
238
        tpu_num_cores (:obj:`int`, `optional`):
Tiger's avatar
Tiger committed
239
            When training on TPU, the number of TPU cores (automatically passed by launcher script).
240
241
242
        dataloader_drop_last (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size)
            or not.
243
244
245
        eval_steps (:obj:`int`, `optional`):
            Number of update steps between two evaluations if :obj:`evaluation_strategy="steps"`. Will default to the
            same value as :obj:`logging_steps` if not set.
Chady Kamar's avatar
Chady Kamar committed
246
        dataloader_num_workers (:obj:`int`, `optional`, defaults to 0):
Sylvain Gugger's avatar
Sylvain Gugger committed
247
248
            Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the
            main process.
249
        past_index (:obj:`int`, `optional`, defaults to -1):
250
            Some models like :doc:`TransformerXL <../model_doc/transformerxl>` or :doc:`XLNet <../model_doc/xlnet>` can
251
252
253
            make use of the past hidden states for their predictions. If this argument is set to a positive int, the
            ``Trainer`` will use the corresponding output (usually index 2) as the past state and feed it to the model
            at the next training step under the keyword argument ``mems``.
254
        run_name (:obj:`str`, `optional`):
255
            A descriptor for the run. Typically used for `wandb <https://www.wandb.com/>`_ logging.
256
        disable_tqdm (:obj:`bool`, `optional`):
257
258
259
            Whether or not to disable the tqdm progress bars and table of metrics produced by
            :class:`~transformers.notebook.NotebookTrainingTracker` in Jupyter Notebooks. Will default to :obj:`True`
            if the logging level is set to warn or lower (default), :obj:`False` otherwise.
260
        remove_unused_columns (:obj:`bool`, `optional`, defaults to :obj:`True`):
261
262
            If using :obj:`datasets.Dataset` datasets, whether or not to automatically remove the columns unused by the
            model forward method.
263

Sylvain Gugger's avatar
Sylvain Gugger committed
264
265
266
            (Note that this behavior is not implemented for :class:`~transformers.TFTrainer` yet.)
        label_names (:obj:`List[str]`, `optional`):
            The list of keys in your dictionary of inputs that correspond to the labels.
Sylvain Gugger's avatar
Sylvain Gugger committed
267
268

            Will eventually default to :obj:`["labels"]` except if the model used is one of the
Sylvain Gugger's avatar
Sylvain Gugger committed
269
            :obj:`XxxForQuestionAnswering` in which case it will default to :obj:`["start_positions",
Sylvain Gugger's avatar
Sylvain Gugger committed
270
271
272
            "end_positions"]`.
        load_best_model_at_end (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to load the best model found during training at the end of training.
273
274
275

            .. note::

276
277
278
                When set to :obj:`True`, the parameters :obj:`save_strategy` needs to be the same as
                :obj:`eval_strategy`, and in the case it is "steps", :obj:`save_steps` must be a round multiple of
                :obj:`eval_steps`.
Sylvain Gugger's avatar
Sylvain Gugger committed
279
        metric_for_best_model (:obj:`str`, `optional`):
280
281
282
283
284
            Use in conjunction with :obj:`load_best_model_at_end` to specify the metric to use to compare two different
            models. Must be the name of a metric returned by the evaluation with or without the prefix :obj:`"eval_"`.
            Will default to :obj:`"loss"` if unspecified and :obj:`load_best_model_at_end=True` (to use the evaluation
            loss).

Tiger's avatar
Tiger committed
285
            If you set this value, :obj:`greater_is_better` will default to :obj:`True`. Don't forget to set it to
Sylvain Gugger's avatar
Sylvain Gugger committed
286
287
288
289
            :obj:`False` if your metric is better when lower.
        greater_is_better (:obj:`bool`, `optional`):
            Use in conjunction with :obj:`load_best_model_at_end` and :obj:`metric_for_best_model` to specify if better
            models should have a greater metric or not. Will default to:
290
291
292
293

            - :obj:`True` if :obj:`metric_for_best_model` is set to a value that isn't :obj:`"loss"` or
              :obj:`"eval_loss"`.
            - :obj:`False` if :obj:`metric_for_best_model` is not set, or set to :obj:`"loss"` or :obj:`"eval_loss"`.
294
        ignore_data_skip (:obj:`bool`, `optional`, defaults to :obj:`False`):
295
296
297
            When resuming training, whether or not to skip the epochs and batches to get the data loading at the same
            stage as in the previous training. If set to :obj:`True`, the training will begin faster (as that skipping
            step can take a long time) but will not yield the same results as the interrupted training would have.
298
        sharded_ddp (:obj:`bool`, :obj:`str` or list of :class:`~transformers.trainer_utils.ShardedDDPOption`, `optional`, defaults to :obj:`False`):
299
300
            Use Sharded DDP training from `FairScale <https://github.com/facebookresearch/fairscale>`__ (in distributed
            training only). This is an experimental feature.
301
302
303
304
305
306
307
308
309
310
311
312
313

            A list of options along the following:

            - :obj:`"simple"`: to use first instance of sharded DDP released by fairscale (:obj:`ShardedDDP`) similar
              to ZeRO-2.
            - :obj:`"zero_dp_2"`: to use the second instance of sharded DPP released by fairscale
              (:obj:`FullyShardedDDP`) in Zero-2 mode (with :obj:`reshard_after_forward=False`).
            - :obj:`"zero_dp_3"`: to use the second instance of sharded DPP released by fairscale
              (:obj:`FullyShardedDDP`) in Zero-3 mode (with :obj:`reshard_after_forward=True`).
            - :obj:`"offload"`: to add ZeRO-offload (only compatible with :obj:`"zero_dp_2"` and :obj:`"zero_dp_3"`).

            If a string is passed, it will be split on space. If a bool is passed, it will be converted to an empty
            list for :obj:`False` and :obj:`["simple"]` for :obj:`True`.
314
        deepspeed (:obj:`str` or :obj:`dict`, `optional`):
315
            Use `Deepspeed <https://github.com/microsoft/deepspeed>`__. This is an experimental feature and its API may
316
317
            evolve in the future. The value is either the location of DeepSpeed json config file (e.g.,
            ``ds_config.json``) or an already loaded json file as a :obj:`dict`"
Sylvain Gugger's avatar
Sylvain Gugger committed
318
319
320
321
        label_smoothing_factor (:obj:`float`, `optional`, defaults to 0.0):
            The label smoothing factor to use. Zero means no label smoothing, otherwise the underlying onehot-encoded
            labels are changed from 0s and 1s to :obj:`label_smoothing_factor/num_labels` and :obj:`1 -
            label_smoothing_factor + label_smoothing_factor/num_labels` respectively.
322
323
324
325
326
327
328
329
330
331
        debug (:obj:`str` or list of :class:`~transformers.debug_utils.DebugOption`, `optional`, defaults to :obj:`""`):
            Enable one or more debug features. This is an experimental feature.

            Possible options are:

            - :obj:`"underflow_overflow"`: detects overflow in model's input/outputs and reports the last frames that
              led to the event
            - :obj:`"tpu_metrics_debug"`: print debug metrics on TPU

            The options should be separated by whitespaces.
Sylvain Gugger's avatar
Sylvain Gugger committed
332
333
334
        adafactor (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to use the :class:`~transformers.Adafactor` optimizer instead of
            :class:`~transformers.AdamW`.
335
        group_by_length (:obj:`bool`, `optional`, defaults to :obj:`False`):
JohnnyC08's avatar
JohnnyC08 committed
336
            Whether or not to group together samples of roughly the same length in the training dataset (to minimize
337
            padding applied and be more efficient). Only useful if applying dynamic padding.
338
339
340
341
        length_column_name (:obj:`str`, `optional`, defaults to :obj:`"length"`):
            Column name for precomputed lengths. If the column exists, grouping by length will use these values rather
            than computing them on train startup. Ignored unless :obj:`group_by_length` is :obj:`True` and the dataset
            is an instance of :obj:`Dataset`.
342
        report_to (:obj:`str` or :obj:`List[str]`, `optional`, defaults to :obj:`"all"`):
343
            The list of integrations to report the results and logs to. Supported platforms are :obj:`"azure_ml"`,
344
345
            :obj:`"comet_ml"`, :obj:`"mlflow"`, :obj:`"tensorboard"` and :obj:`"wandb"`. Use :obj:`"all"` to report to
            all integrations installed, :obj:`"none"` for no integrations.
346
347
        ddp_find_unused_parameters (:obj:`bool`, `optional`):
            When using distributed training, the value of the flag :obj:`find_unused_parameters` passed to
348
            :obj:`DistributedDataParallel`. Will default to :obj:`False` if gradient checkpointing is used, :obj:`True`
349
            otherwise.
Sylvain Gugger's avatar
Sylvain Gugger committed
350
        dataloader_pin_memory (:obj:`bool`, `optional`, defaults to :obj:`True`):
351
            Whether you want to pin memory in data loaders or not. Will default to :obj:`True`.
352
353
354
        skip_memory_metrics (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to skip adding of memory profiler reports to metrics. This is skipped by default because it slows
            down the training and evaluation speed.
Sylvain Gugger's avatar
Sylvain Gugger committed
355
        push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
356
357
358
            Whether or not to upload the trained model to the hub after training. If this is activated, and
            :obj:`output_dir` exists, it needs to be a local clone of the repository to which the
            :class:`~transformers.Trainer` will be pushed.
359
360
361
362
363
        resume_from_checkpoint (:obj:`str`, `optional`):
            The path to a folder with a valid checkpoint for your model. This argument is not directly used by
            :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
            the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
            details.
364
        hub_model_id (:obj:`str`, `optional`):
365
366
367
368
369
            The name of the repository to keep in sync with the local `output_dir`. It can be a simple model ID in
            which case the model will be pushed in your namespace. Otherwise it should be the whole repository name,
            for instance :obj:`"user_name/model"`, which allows you to push to an organization you are a member of with
            :obj:`"organization_name/model"`. Will default to :obj:`user_name/output_dir_name` with `output_dir_name`
            being the name of :obj:`output_dir`.
370

371
            Will default to to the name of :obj:`output_dir`.
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        hub_strategy (:obj:`str` or :class:`~transformers.trainer_utils.HubStrategy`, `optional`, defaults to :obj:`"every_save"`):
            Defines the scope of what is pushed to the Hub and when. Possible values are:

            - :obj:`"end"`: push the model, its configuration, the tokenizer (if passed along to the
              :class:`~transformers.Trainer`) and a draft of a model card at the end of training.
            - :obj:`"every_save"`: push the model, its configuration, the tokenizer (if passed along to the
              :class:`~transformers.Trainer`) and a draft of a model card each time there is a model save. The pushes
              are asynchronous to not block training, and in case the save are very frequent, a new push is only
              attempted if the previous one is finished. A last push is made with the final model at the end of
              training.
            - :obj:`"checkpoint"`: like :obj:`"every_save"` but the latest checkpoint is also pushed in a subfolder
              named last-checkpoint, allowing you to resume training easily with
              :obj:`trainer.train(resume_from_checkpoint="last-checkpoint")`.
            - :obj:`"all_checkpoints"`: like :obj:`"checkpoint"` but all checkpoints are pushed like they appear in the
              output folder (so you will get one checkpoint folder per folder in your final repository)

388
        hub_token (:obj:`str`, `optional`):
389
390
            The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with
            :obj:`huggingface-cli login`.
391
392
        gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
            If True, use gradient checkpointing to save memory at the expense of slower backward pass.
393
394
    """

395
    output_dir: str = field(
396
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
397
398
    )
    overwrite_output_dir: bool = field(
399
400
401
        default=False,
        metadata={
            "help": (
402
                "Overwrite the content of the output directory. "
403
404
405
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
406
407
408
    )

    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
409
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
Julien Chaumond's avatar
Julien Chaumond committed
410
    do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."})
411
    evaluation_strategy: IntervalStrategy = field(
412
        default="no",
Sylvain Gugger's avatar
Sylvain Gugger committed
413
        metadata={"help": "The evaluation strategy to use."},
414
    )
415
    prediction_loss_only: bool = field(
Lysandre's avatar
Lysandre committed
416
417
        default=False,
        metadata={"help": "When performing evaluation and predictions, only returns the loss."},
418
    )
419

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )

    per_gpu_train_batch_size: Optional[int] = field(
        default=None,
        metadata={
            "help": "Deprecated, the use of `--per_device_train_batch_size` is preferred. "
            "Batch size per GPU/TPU core/CPU for training."
        },
    )
    per_gpu_eval_batch_size: Optional[int] = field(
        default=None,
        metadata={
437
            "help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred. "
438
439
440
441
            "Batch size per GPU/TPU core/CPU for evaluation."
        },
    )

442
    gradient_accumulation_steps: int = field(
443
444
        default=1,
        metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."},
445
    )
446
447
448
449
    eval_accumulation_steps: Optional[int] = field(
        default=None,
        metadata={"help": "Number of predictions steps to accumulate before moving the tensors to the CPU."},
    )
450

451
452
453
454
455
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
456
457
458
459
460
461
462
    max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})

    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    max_steps: int = field(
        default=-1,
        metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."},
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
463
464
465
466
    lr_scheduler_type: SchedulerType = field(
        default="linear",
        metadata={"help": "The scheduler type to use."},
    )
467
468
469
    warmup_ratio: float = field(
        default=0.0, metadata={"help": "Linear warmup over warmup_ratio fraction of total steps."}
    )
470
471
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    log_level: Optional[str] = field(
        default="passive",
        metadata={
            "help": "Logger log level to use on the main node. Possible choices are the log levels as strings: 'debug', 'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and lets the application set the level. Defaults to 'passive'.",
            "choices": trainer_log_levels.keys(),
        },
    )
    log_level_replica: Optional[str] = field(
        default="passive",
        metadata={
            "help": "Logger log level to use on replica nodes. Same choices and defaults as ``log_level``",
            "choices": trainer_log_levels.keys(),
        },
    )
    log_on_each_node: bool = field(
        default=True,
        metadata={
            "help": "When doing a multinode distributed training, whether to log once per node or just once on the main node."
        },
    )
492
    logging_dir: Optional[str] = field(default=None, metadata={"help": "Tensorboard log dir."})
493
    logging_strategy: IntervalStrategy = field(
494
495
496
        default="steps",
        metadata={"help": "The logging strategy to use."},
    )
497
    logging_first_step: bool = field(default=False, metadata={"help": "Log the first global_step"})
498
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
499
    logging_nan_inf_filter: str = field(default=True, metadata={"help": "Filter nan and inf losses for logging."})
500
501
502
503
    save_strategy: IntervalStrategy = field(
        default="steps",
        metadata={"help": "The checkpoint save strategy to use."},
    )
504
505
506
507
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    save_total_limit: Optional[int] = field(
        default=None,
        metadata={
508
            "help": (
509
                "Limit the total amount of checkpoints. "
510
511
                "Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints"
            )
512
513
        },
    )
514
515
516
517
518
519
    save_on_each_node: bool = field(
        default=False,
        metadata={
            "help": "When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on the main one"
        },
    )
Lysandre Debut's avatar
Lysandre Debut committed
520
    no_cuda: bool = field(default=False, metadata={"help": "Do not use CUDA even when it is available"})
521
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
522
523
524
525
526
527
    bf16: bool = field(
        default=False,
        metadata={
            "help": "Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA architecture. This is an experimental API and it may change."
        },
    )
528
529
    fp16: bool = field(
        default=False,
530
        metadata={"help": "Whether to use fp16 (mixed) precision instead of 32-bit"},
531
532
533
534
    )
    fp16_opt_level: str = field(
        default="O1",
        metadata={
535
            "help": (
536
                "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
537
538
                "See details at https://nvidia.github.io/apex/amp.html"
            )
539
540
        },
    )
541
    half_precision_backend: str = field(
542
        default="auto",
543
544
545
546
547
548
549
        metadata={"help": "The backend to be used for half precision.", "choices": ["auto", "amp", "apex"]},
    )
    bf16_full_eval: bool = field(
        default=False,
        metadata={
            "help": "Whether to use full bfloat16 evaluation instead of 32-bit. This is an experimental API and it may change."
        },
550
    )
551
552
    fp16_full_eval: bool = field(
        default=False,
553
        metadata={"help": "Whether to use full float16 evaluation instead of 32-bit"},
554
    )
555
556
557
558
559
560
    tf32: bool = field(
        default=None,
        metadata={
            "help": "Whether to enable tf32 mode, available in Ampere and newer GPU architectures. This is an experimental API and it may change."
        },
    )
561
    local_rank: int = field(default=-1, metadata={"help": "For distributed training: local_rank"})
562
563
564
565
    xpu_backend: str = field(
        default=None,
        metadata={"help": "The backend to be used for distributed training on Intel XPU.", "choices": ["mpi", "ccl"]},
    )
Lysandre Debut's avatar
Lysandre Debut committed
566
567
568
    tpu_num_cores: Optional[int] = field(
        default=None, metadata={"help": "TPU: Number of TPU cores (automatically passed by launcher script)"}
    )
569
570
    tpu_metrics_debug: bool = field(
        default=False,
571
572
573
574
575
576
577
578
579
580
581
        metadata={
            "help": "Deprecated, the use of `--debug tpu_metrics_debug` is preferred. TPU: Whether to print debug metrics"
        },
    )
    debug: str = field(
        default="",
        metadata={
            "help": "Whether or not to enable debug mode. Current options: "
            "`underflow_overflow` (Detect underflow and overflow in activations and weights), "
            "`tpu_metrics_debug` (print debug metrics on TPU)."
        },
582
    )
Lysandre Debut's avatar
Lysandre Debut committed
583

Setu Shah's avatar
Setu Shah committed
584
585
586
    dataloader_drop_last: bool = field(
        default=False, metadata={"help": "Drop the last incomplete batch if it is not divisible by the batch size."}
    )
587
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
Chady Kamar's avatar
Chady Kamar committed
588
589
    dataloader_num_workers: int = field(
        default=0,
Sylvain Gugger's avatar
Sylvain Gugger committed
590
591
592
        metadata={
            "help": "Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process."
        },
Chady Kamar's avatar
Chady Kamar committed
593
    )
Setu Shah's avatar
Setu Shah committed
594

595
596
597
598
599
    past_index: int = field(
        default=-1,
        metadata={"help": "If >=0, uses the corresponding part of the output as the past state for next step."},
    )

600
601
602
    run_name: Optional[str] = field(
        default=None, metadata={"help": "An optional descriptor for the run. Notably used for wandb logging."}
    )
603
604
605
606
    disable_tqdm: Optional[bool] = field(
        default=None, metadata={"help": "Whether or not to disable the tqdm progress bars."}
    )

607
608
609
    remove_unused_columns: Optional[bool] = field(
        default=True, metadata={"help": "Remove columns not required by the model when using an nlp.Dataset."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
610
611
612
613
    label_names: Optional[List[str]] = field(
        default=None, metadata={"help": "The list of keys in your dictionary of inputs that correspond to the labels."}
    )

614
615
616
617
618
619
620
621
622
623
    load_best_model_at_end: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to load the best model found during training at the end of training."},
    )
    metric_for_best_model: Optional[str] = field(
        default=None, metadata={"help": "The metric to use to compare two different models."}
    )
    greater_is_better: Optional[bool] = field(
        default=None, metadata={"help": "Whether the `metric_for_best_model` should be maximized or not."}
    )
624
625
626
627
628
629
    ignore_data_skip: bool = field(
        default=False,
        metadata={
            "help": "When resuming training, whether or not to skip the first epochs and batches to get to the same training data."
        },
    )
630
631
632
633
634
    sharded_ddp: str = field(
        default="",
        metadata={
            "help": "Whether or not to use sharded DDP training (in distributed training only). The base option "
            "should be `simple`, `zero_dp_2` or `zero_dp_3` and you can add CPU-offload to `zero_dp_2` or `zero_dp_3` "
635
636
            "like this: zero_dp_2 offload` or `zero_dp_3 offload`. You can add auto-wrap to `zero_dp_2` or "
            "with the same syntax: zero_dp_2 auto_wrap` or `zero_dp_3 auto_wrap`.",
637
        },
638
    )
639
640
    deepspeed: Optional[str] = field(
        default=None,
641
642
643
        metadata={
            "help": "Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already loaded json file as a dict"
        },
644
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
645
646
647
    label_smoothing_factor: float = field(
        default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."}
    )
648
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
649
650
651
652
    group_by_length: bool = field(
        default=False,
        metadata={"help": "Whether or not to group samples of roughly the same length together when batching."},
    )
653
654
655
656
    length_column_name: Optional[str] = field(
        default="length",
        metadata={"help": "Column name with precomputed lengths to use when grouping by length."},
    )
657
658
659
    report_to: Optional[List[str]] = field(
        default=None, metadata={"help": "The list of integrations to report the results and logs to."}
    )
660
661
662
663
664
665
666
    ddp_find_unused_parameters: Optional[bool] = field(
        default=None,
        metadata={
            "help": "When using distributed training, the value of the flag `find_unused_parameters` passed to "
            "`DistributedDataParallel`."
        },
    )
667
668
669
    dataloader_pin_memory: bool = field(
        default=True, metadata={"help": "Whether or not to pin memory for DataLoader."}
    )
670
    skip_memory_metrics: bool = field(
671
        default=True, metadata={"help": "Whether or not to skip adding of memory profiler reports to metrics."}
672
    )
673
674
675
    use_legacy_prediction_loop: bool = field(
        default=False, metadata={"help": "Whether or not to use the legacy prediction_loop in the Trainer."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
676
677
678
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
679
680
681
682
    resume_from_checkpoint: Optional[str] = field(
        default=None,
        metadata={"help": "The path to a folder with a valid checkpoint for your model."},
    )
683
684
685
    hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
    )
686
687
688
689
    hub_strategy: HubStrategy = field(
        default="every_save",
        metadata={"help": "The hub strategy to use when `--push_to_hub` is activated."},
    )
690
    hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
691
692
693
694
695
696
    gradient_checkpointing: bool = field(
        default=False,
        metadata={
            "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
        },
    )
697
    # Deprecated arguments
698
699
700
701
    fp16_backend: str = field(
        default="auto",
        metadata={"help": "Deprecated. Use half_precision_backend instead", "choices": ["auto", "amp", "apex"]},
    )
702
703
704
705
706
707
708
    push_to_hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to which push the `Trainer`."}
    )
    push_to_hub_organization: str = field(
        default=None, metadata={"help": "The name of the organization in with to which push the `Trainer`."}
    )
    push_to_hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
709
    _n_gpu: int = field(init=False, repr=False, default=-1)
Sylvain Gugger's avatar
Sylvain Gugger committed
710
711
712
713
    mp_parameters: str = field(
        default="",
        metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in Trainer"},
    )
714

Sylvain Gugger's avatar
Sylvain Gugger committed
715
    def __post_init__(self):
716
717
718
719
720
721
        # Handle --use_env option in torch.distributed.launch (local_rank not passed as an arg then).
        # This needs to happen before any call to self.device or self.n_gpu.
        env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
        if env_local_rank != -1 and env_local_rank != self.local_rank:
            self.local_rank = env_local_rank

722
        # convert to int
723
        self.log_level = trainer_log_levels[self.log_level]
724
        self.log_level_replica = trainer_log_levels[self.log_level_replica]
725

726
727
728
729
730
        # expand paths, if not os.makedirs("~/bar") will make directory
        # in the current directory instead of the actual home
        # 聽see https://github.com/huggingface/transformers/issues/10628
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)
731
732
        if self.logging_dir is None and self.output_dir is not None:
            self.logging_dir = os.path.join(self.output_dir, default_logdir())
733
734
735
        if self.logging_dir is not None:
            self.logging_dir = os.path.expanduser(self.logging_dir)

Sylvain Gugger's avatar
Sylvain Gugger committed
736
737
        if self.disable_tqdm is None:
            self.disable_tqdm = logger.getEffectiveLevel() > logging.WARN
738
739
740
741
742
743

        if isinstance(self.evaluation_strategy, EvaluationStrategy):
            warnings.warn(
                "using `EvaluationStrategy` for `evaluation_strategy` is deprecated and will be removed in version 5 of 馃 Transformers. Use `IntervalStrategy` instead",
                FutureWarning,
            )
744
745
            # Go back to the underlying string or we won't be able to instantiate `IntervalStrategy` on it.
            self.evaluation_strategy = self.evaluation_strategy.value
746
747
748
749

        self.evaluation_strategy = IntervalStrategy(self.evaluation_strategy)
        self.logging_strategy = IntervalStrategy(self.logging_strategy)
        self.save_strategy = IntervalStrategy(self.save_strategy)
750
        self.hub_strategy = HubStrategy(self.hub_strategy)
751

Sylvain Gugger's avatar
Sylvain Gugger committed
752
        self.lr_scheduler_type = SchedulerType(self.lr_scheduler_type)
753
        if self.do_eval is False and self.evaluation_strategy != IntervalStrategy.NO:
754
            self.do_eval = True
755
756
757
758
759
760
761
762
763
764
765
766
767
768

        # eval_steps has to be defined and non-zero, fallbacks to logging_steps if the latter is non-zero
        if self.evaluation_strategy == IntervalStrategy.STEPS and (self.eval_steps is None or self.eval_steps == 0):
            if self.logging_steps > 0:
                logger.info(f"using `logging_steps` to initialize `eval_steps` to {self.logging_steps}")
                self.eval_steps = self.logging_steps
            else:
                raise ValueError(
                    f"evaluation strategy {self.evaluation_strategy} requires either non-zero --eval_steps or --logging_steps"
                )

        # logging_steps must be non-zero for logging_strategy that is other than 'no'
        if self.logging_strategy == IntervalStrategy.STEPS and self.logging_steps == 0:
            raise ValueError(f"logging strategy {self.logging_strategy} requires non-zero --logging_steps")
769

770
771
772
773
774
775
776
777
778
779
780
781
782
        # Sanity checks for load_best_model_at_end: we require save and eval strategies to be compatible.
        if self.load_best_model_at_end:
            if self.evaluation_strategy != self.save_strategy:
                raise ValueError(
                    "--load_best_model_at_end requires the save and eval strategy to match, but found\n- Evaluation "
                    f"strategy: {self.evaluation_strategy}\n- Save strategy: {self.save_strategy}"
                )
            if self.evaluation_strategy == IntervalStrategy.STEPS and self.save_steps % self.eval_steps != 0:
                raise ValueError(
                    "--load_best_model_at_end requires the saving steps to be a round multiple of the evaluation "
                    f"steps, but found {self.save_steps}, which is not a round multiple of {self.eval_steps}."
                )

783
784
785
786
        if self.load_best_model_at_end and self.metric_for_best_model is None:
            self.metric_for_best_model = "loss"
        if self.greater_is_better is None and self.metric_for_best_model is not None:
            self.greater_is_better = self.metric_for_best_model not in ["loss", "eval_loss"]
787
788
        if self.run_name is None:
            self.run_name = self.output_dir
789

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
        if self.fp16_backend and self.fp16_backend != "auto":
            warnings.warn(
                "`fp16_backend` is deprecated and will be removed in version 5 of 馃 Transformers. Use `half_precision_backend` instead",
                FutureWarning,
            )
            self.half_precision_backend = self.fp16_backend

        if self.fp16 and self.bf16:
            raise ValueError("At most one of fp16 and bf16 can be True, but not both")
        if self.bf16:
            if self.half_precision_backend == "apex":
                raise ValueError(
                    " `--half_precision_backend apex`: bf16 is not supported by apex. Use `--half_precision_backend amp` instead"
                )
            if not (self.sharded_ddp == "" or not self.sharded_ddp):
                raise ValueError("sharded_ddp is not supported with bf16")
        if (
            is_torch_available()
            and self.device.type != "cuda"
            and (self.fp16 or self.fp16_full_eval or self.bf16 or self.bf16_full_eval)
        ):
811
            raise ValueError(
812
                "Mixed precision training with AMP or APEX (`--fp16` or `--bf16`) and half precision evaluation (`--fp16_full_eval` or `--bf16_full_eval`) can only be used on CUDA devices."
813
            )
814

815
816
817
818
819
820
821
822
823
824
825
        if is_torch_available() and self.tf32 is not None:
            if self.tf32:
                if is_torch_tf32_available():
                    torch.backends.cuda.matmul.allow_tf32 = True
                else:
                    raise ValueError("--tf32 requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.7")
            else:
                if is_torch_tf32_available():
                    torch.backends.cuda.matmul.allow_tf32 = False
                # no need to assert on else

826
        if self.report_to is None:
827
828
829
830
831
832
833
            logger.info(
                "The default value for the training argument `--report_to` will change in v5 (from all installed "
                "integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as "
                "now. You should start updating your code and make this info disappear :-)."
            )
            self.report_to = "all"
        if self.report_to == "all" or self.report_to == ["all"]:
834
835
836
837
            # Import at runtime to avoid a circular import.
            from .integrations import get_available_reporting_integrations

            self.report_to = get_available_reporting_integrations()
838
839
840
841
        elif self.report_to == "none" or self.report_to == ["none"]:
            self.report_to = []
        elif not isinstance(self.report_to, list):
            self.report_to = [self.report_to]
842

843
844
845
846
847
848
849
        if self.warmup_ratio < 0 or self.warmup_ratio > 1:
            raise ValueError("warmup_ratio must lie in range [0,1]")
        elif self.warmup_ratio > 0 and self.warmup_steps > 0:
            logger.info(
                "Both warmup_ratio and warmup_steps given, warmup_steps will override any effect of warmup_ratio during training"
            )

850
851
852
853
854
855
856
857
858
        if isinstance(self.sharded_ddp, bool):
            self.sharded_ddp = "simple" if self.sharded_ddp else ""
        if isinstance(self.sharded_ddp, str):
            self.sharded_ddp = [ShardedDDPOption(s) for s in self.sharded_ddp.split()]
        if self.sharded_ddp == [ShardedDDPOption.OFFLOAD]:
            raise ValueError(
                "`--sharded_ddp offload` can't work on its own. It needs to be added to `--sharded_ddp zero_dp_2` or "
                '`--sharded_ddp zero_dp_3`. For example, `--sharded_ddp "zero_dp_2 offload"`.'
            )
859
        elif len(self.sharded_ddp) > 1 and ShardedDDPOption.SIMPLE in self.sharded_ddp:
860
861
862
863
            raise ValueError("`--sharded_ddp simple` is not compatible with any other option.")
        elif ShardedDDPOption.ZERO_DP_2 in self.sharded_ddp and ShardedDDPOption.ZERO_DP_3 in self.sharded_ddp:
            raise ValueError("`--sharded_ddp zero_dp_2` is not compatible with `--sharded_ddp zero_dp_3`.")

864
865
866
867
868
869
870
871
872
873
        if self.tpu_metrics_debug:
            warnings.warn(
                "using `--tpu_metrics_debug` is deprecated and will be removed in version 5 of 馃 Transformers. Use `--debug tpu_metrics_debug` instead",
                FutureWarning,
            )
            self.debug += " tpu_metrics_debug"
            self.tpu_metrics_debug = False
        if isinstance(self.debug, str):
            self.debug = [DebugOption(s) for s in self.debug.split()]

874
875
876
        if self.deepspeed:
            # - must be run very last in arg parsing, since it will use a lot of these settings.
            # - must be run before the model is created.
877
            from transformers.deepspeed import HfTrainerDeepSpeedConfig
878

879
880
881
882
            # will be used later by the Trainer
            # note: leave self.deepspeed unmodified in case a user relies on it not to be modified)
            self.hf_deepspeed_config = HfTrainerDeepSpeedConfig(self.deepspeed)
            self.hf_deepspeed_config.trainer_config_process(self)
883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
        if self.push_to_hub_token is not None:
            warnings.warn(
                "`--push_to_hub_token` is deprecated and will be removed in version 5 of 馃 Transformers. Use "
                "`--hub_token` instead.",
                FutureWarning,
            )
            self.hub_token = self.push_to_hub_token

        if self.push_to_hub_model_id is not None:
            self.hub_model_id = get_full_repo_name(
                self.push_to_hub_model_id, organization=self.push_to_hub_organization, token=self.hub_token
            )
            if self.push_to_hub_organization is not None:
                warnings.warn(
                    "`--push_to_hub_model_id` and `--push_to_hub_organization` are deprecated and will be removed in "
                    "version 5 of 馃 Transformers. Use `--hub_model_id` instead and pass the full repo name to this "
                    f"argument (in this case {self.hub_model_id}).",
                    FutureWarning,
                )
            else:
                warnings.warn(
                    "`--push_to_hub_model_id` is deprecated and will be removed in version 5 of 馃 Transformers. Use "
                    "`--hub_model_id` instead and pass the full repo name to this argument (in this case "
                    f"{self.hub_model_id}).",
                    FutureWarning,
                )
        elif self.push_to_hub_organization is not None:
            self.hub_model_id = f"{self.push_to_hub_organization}/{Path(self.output_dir).name}"
            warnings.warn(
                "`--push_to_hub_organization` is deprecated and will be removed in version 5 of 馃 Transformers. Use "
                "`--hub_model_id` instead and pass the full repo name to this argument (in this case "
                f"{self.hub_model_id}).",
                FutureWarning,
            )
918

919
    def __str__(self):
920
        self_as_dict = asdict(self)
921
922
923

        # Remove deprecated arguments. That code should be removed once
        # those deprecated arguments are removed from TrainingArguments. (TODO: v5)
924
925
        del self_as_dict["per_gpu_train_batch_size"]
        del self_as_dict["per_gpu_eval_batch_size"]
926

927
928
        self_as_dict = {k: f"<{k.upper()}>" if k.endswith("_token") else v for k, v in self_as_dict.items()}

929
930
931
932
        attrs_as_str = [f"{k}={v},\n" for k, v in sorted(self_as_dict.items())]
        return f"{self.__class__.__name__}(\n{''.join(attrs_as_str)})"

    __repr__ = __str__
933

Julien Chaumond's avatar
Julien Chaumond committed
934
935
    @property
    def train_batch_size(self) -> int:
936
937
938
        """
        The actual batch size for training (may differ from :obj:`per_gpu_train_batch_size` in distributed training).
        """
939
940
941
942
943
944
        if self.per_gpu_train_batch_size:
            logger.warning(
                "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future "
                "version. Using `--per_device_train_batch_size` is preferred."
            )
        per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size
945
        train_batch_size = per_device_batch_size * max(1, self.n_gpu)
946
        return train_batch_size
Julien Chaumond's avatar
Julien Chaumond committed
947
948
949

    @property
    def eval_batch_size(self) -> int:
950
951
952
        """
        The actual batch size for evaluation (may differ from :obj:`per_gpu_eval_batch_size` in distributed training).
        """
953
954
955
956
957
958
        if self.per_gpu_eval_batch_size:
            logger.warning(
                "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future "
                "version. Using `--per_device_eval_batch_size` is preferred."
            )
        per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size
959
        eval_batch_size = per_device_batch_size * max(1, self.n_gpu)
960
        return eval_batch_size
Julien Chaumond's avatar
Julien Chaumond committed
961
962
963

    @cached_property
    @torch_required
964
    def _setup_devices(self) -> "torch.device":
Julien Chaumond's avatar
Julien Chaumond committed
965
966
967
        logger.info("PyTorch: setting up devices")
        if self.no_cuda:
            device = torch.device("cpu")
968
            self._n_gpu = 0
969
970
971
972
973
974
975
976
            if self.local_rank != -1:
                # Initializes distributed backend for cpu
                if self.xpu_backend not in ("mpi", "ccl"):
                    raise ValueError(
                        "CPU distributed training backend is not properly set. "
                        "Please set '--xpu_backend' to either 'mpi' or 'ccl'."
                    )
                torch.distributed.init_process_group(backend=self.xpu_backend)
977
        elif is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
978
            device = xm.xla_device()
979
            self._n_gpu = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
980
981
982
983
984
        elif is_sagemaker_mp_enabled():
            local_rank = smp.local_rank()
            device = torch.device("cuda", local_rank)
            self._n_gpu = 1
        elif is_sagemaker_dp_enabled():
985
986
            sm_dist.init_process_group()
            self.local_rank = sm_dist.get_local_rank()
Sylvain Gugger's avatar
Sylvain Gugger committed
987
988
            device = torch.device("cuda", self.local_rank)
            self._n_gpu = 1
989
        elif self.deepspeed:
990
            # deepspeed inits torch.distributed internally
991
            from .deepspeed import is_deepspeed_available
992
993
994
995
996
997

            if not is_deepspeed_available():
                raise ImportError("--deepspeed requires deepspeed: `pip install deepspeed`.")
            import deepspeed

            deepspeed.init_distributed()
998
999
1000
1001
1002
1003

            # workaround for setups like notebooks where the launcher can't be used,
            # but deepspeed requires a dist env.
            # env LOCAL_RANK could be set manually by the user, or via init_distributed if mpi4py is installed
            self.local_rank = int(os.environ.get("LOCAL_RANK", "-1"))

1004
1005
            device = torch.device("cuda", self.local_rank)
            self._n_gpu = 1
Julien Chaumond's avatar
Julien Chaumond committed
1006
1007
1008
        elif self.local_rank == -1:
            # if n_gpu is > 1 we'll use nn.DataParallel.
            # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
1009
1010
1011
1012
1013
            # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
            # trigger an error that a device index is missing. Index 0 takes into account the
            # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
            # will use the first GPU in that env, i.e. GPU#1
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
1014
1015
            # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
            # the default value.
1016
            self._n_gpu = torch.cuda.device_count()
Julien Chaumond's avatar
Julien Chaumond committed
1017
1018
        else:
            # Here, we'll use torch.distributed.
1019
            # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
1020
            torch.distributed.init_process_group(backend="nccl")
Julien Chaumond's avatar
Julien Chaumond committed
1021
            device = torch.device("cuda", self.local_rank)
1022
            self._n_gpu = 1
1023
1024
1025
1026

        if device.type == "cuda":
            torch.cuda.set_device(device)

1027
        return device
Julien Chaumond's avatar
Julien Chaumond committed
1028
1029
1030
1031

    @property
    @torch_required
    def device(self) -> "torch.device":
1032
1033
1034
        """
        The device used by this process.
        """
1035
        return self._setup_devices
Julien Chaumond's avatar
Julien Chaumond committed
1036
1037
1038
1039

    @property
    @torch_required
    def n_gpu(self):
1040
1041
1042
1043
1044
1045
1046
        """
        The number of GPUs used by this process.

        Note:
            This will only be greater than one when you have multiple GPUs available but are not using distributed
            training. For distributed training, it will always be 1.
        """
1047
1048
1049
        # Make sure `self._n_gpu` is properly setup.
        _ = self._setup_devices
        return self._n_gpu
Julien Chaumond's avatar
Julien Chaumond committed
1050

1051
1052
1053
1054
1055
1056
1057
1058
    @property
    @torch_required
    def parallel_mode(self):
        """
        The current mode used for parallelism if multiple GPUs/TPU cores are available. One of:

        - :obj:`ParallelMode.NOT_PARALLEL`: no parallelism (CPU or one GPU).
        - :obj:`ParallelMode.NOT_DISTRIBUTED`: several GPUs in one single process (uses :obj:`torch.nn.DataParallel`).
1059
        - :obj:`ParallelMode.DISTRIBUTED`: several GPUs, each having its own process (uses
1060
1061
1062
1063
1064
          :obj:`torch.nn.DistributedDataParallel`).
        - :obj:`ParallelMode.TPU`: several TPU cores.
        """
        if is_torch_tpu_available():
            return ParallelMode.TPU
Sylvain Gugger's avatar
Sylvain Gugger committed
1065
1066
1067
1068
        elif is_sagemaker_mp_enabled():
            return ParallelMode.SAGEMAKER_MODEL_PARALLEL
        elif is_sagemaker_dp_enabled():
            return ParallelMode.SAGEMAKER_DATA_PARALLEL
1069
1070
1071
1072
1073
1074
1075
        elif self.local_rank != -1:
            return ParallelMode.DISTRIBUTED
        elif self.n_gpu > 1:
            return ParallelMode.NOT_DISTRIBUTED
        else:
            return ParallelMode.NOT_PARALLEL

1076
1077
1078
1079
1080
1081
1082
1083
    @property
    @torch_required
    def world_size(self):
        """
        The number of processes used in parallel.
        """
        if is_torch_tpu_available():
            return xm.xrt_world_size()
Sylvain Gugger's avatar
Sylvain Gugger committed
1084
1085
1086
        elif is_sagemaker_mp_enabled():
            return smp.dp_size()
        elif is_sagemaker_dp_enabled():
1087
1088
1089
1090
1091
            return sm_dist.get_world_size()
        elif self.local_rank != -1:
            return torch.distributed.get_world_size()
        return 1

1092
1093
1094
1095
    @property
    @torch_required
    def process_index(self):
        """
1096
        The index of the current process used.
1097
1098
1099
        """
        if is_torch_tpu_available():
            return xm.get_ordinal()
Sylvain Gugger's avatar
Sylvain Gugger committed
1100
1101
1102
        elif is_sagemaker_mp_enabled():
            return smp.dp_rank()
        elif is_sagemaker_dp_enabled():
1103
1104
1105
1106
1107
            return sm_dist.get_rank()
        elif self.local_rank != -1:
            return torch.distributed.get_rank()
        return 0

1108
1109
1110
1111
1112
1113
1114
    @property
    @torch_required
    def local_process_index(self):
        """
        The index of the local process used.
        """
        if is_torch_tpu_available():
1115
            return xm.get_local_ordinal()
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
        elif is_sagemaker_mp_enabled():
            return smp.local_rank()
        elif is_sagemaker_dp_enabled():
            return sm_dist.get_rank()
        elif self.local_rank != -1:
            return self.local_rank
        return 0

    @property
    def should_log(self):
        """
        Whether or not the current process should produce log.
        """
        if self.log_on_each_node:
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
            return self.local_process_index == 0
        else:
            if is_sagemaker_mp_enabled():
                return smp.rank() == 0
            else:
                return self.process_index == 0

    @property
    def should_save(self):
        """
        Whether or not the current process should write to disk, e.g., to save models and checkpoints.
        """
        if self.save_on_each_node:
1143
1144
1145
1146
1147
1148
1149
            return self.local_process_index == 0
        else:
            if is_sagemaker_mp_enabled():
                return smp.rank() == 0
            else:
                return self.process_index == 0

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
    def get_process_log_level(self):
        """
        Returns the log level to be used depending on whether this process is the main process of node 0, main process
        of node non-0, or a non-main process.

        For the main process the log level defaults to ``logging.INFO`` unless overridden by ``log_level`` argument.

        For the replica processes the log level defaults to ``logging.WARNING`` unless overridden by
        ``log_level_replica`` argument.

        The choice between the main and replica process settings is made according to the return value of
        ``should_log``.
        """

1164
1165
1166
1167
        log_level_main_node = logging.INFO if self.log_level == -1 else self.log_level
        log_level_replica_node = logging.WARNING if self.log_level_replica == -1 else self.log_level_replica
        return log_level_main_node if self.should_log else log_level_replica_node

1168
1169
1170
1171
1172
    @property
    def place_model_on_device(self):
        """
        Can be subclassed and overridden for some specific integrations.
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1173
        return not is_sagemaker_mp_enabled()
1174

Sylvain Gugger's avatar
Sylvain Gugger committed
1175
1176
1177
1178
1179
    @property
    def _no_sync_in_gradient_accumulation(self):
        """
        Whether or not to use no_sync for the gradients when doing gradient accumulation.
        """
1180
        return not (self.deepspeed or is_sagemaker_dp_enabled() or is_sagemaker_mp_enabled())
Sylvain Gugger's avatar
Sylvain Gugger committed
1181

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
    @contextlib.contextmanager
    def main_process_first(self, local=True, desc="work"):
        """
            A context manager for torch distributed environment where on needs to do something on the main process,
            while blocking replicas, and when it's finished releasing the replicas.

            One such use is for ``datasets``'s ``map`` feature which to be efficient should be run once on the main
            process, which upon completion saves a cached version of results and which then automatically gets loaded
            by the replicas.

        Args:
            local (:obj:`bool`, `optional`, defaults to :obj:`True`):
                if :obj:`True` first means process of rank 0 of each node if :obj:`False` first means process of rank 0
                of node rank 0 In multi-node environment with a shared filesystem you most likely will want to use
                ``local=False`` so that only the main process of the first node will do the processing. If however, the
                filesystem is not shared, then the main process of each node will need to do the processing, which is
                the default behavior.
            desc (:obj:`str`, `optional`, defaults to ``"work"``):
                a work description to be used in debug logs

        """
        if is_torch_available() and self.world_size > 1:
            if local:
                is_main_process = self.local_process_index == 0
                main_process_desc = "main local process"
            else:
                is_main_process = self.process_index == 0
                main_process_desc = "main process"

            try:
                if not is_main_process:
                    # tell all replicas to wait
                    logger.debug(f"{self.process_index}: waiting for the {main_process_desc} to perform {desc}")
1215
1216
                    if is_torch_tpu_available():
                        xm.rendezvous(desc)
1217
                    elif is_sagemaker_dp_enabled():
1218
                        sm_dist.barrier()
1219
1220
                    else:
                        torch.distributed.barrier()
1221
1222
1223
1224
1225
                yield
            finally:
                if is_main_process:
                    # the wait is over
                    logger.debug(f"{self.process_index}: {main_process_desc} completed {desc}, releasing all replicas")
1226
1227
                    if is_torch_tpu_available():
                        xm.rendezvous(desc)
1228
                    elif is_sagemaker_dp_enabled():
1229
                        sm_dist.barrier()
1230
1231
                    else:
                        torch.distributed.barrier()
1232
1233
1234
        else:
            yield

1235
1236
1237
1238
1239
    def get_warmup_steps(self, num_training_steps: int):
        """
        Get number of steps used for a linear warmup.
        """
        warmup_steps = (
1240
            self.warmup_steps if self.warmup_steps > 0 else math.ceil(num_training_steps * self.warmup_ratio)
1241
1242
1243
        )
        return warmup_steps

1244
1245
    def to_dict(self):
        """
1246
1247
        Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
        the token values by removing their value.
1248
        """
1249
        d = asdict(self)
1250
1251
1252
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
1253
1254
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
1255
1256
            if k.endswith("_token"):
                d[k] = f"<{k.upper()}>"
1257
1258
        return d

Julien Chaumond's avatar
Julien Chaumond committed
1259
1260
1261
1262
    def to_json_string(self):
        """
        Serializes this instance to a JSON string.
        """
1263
        return json.dumps(self.to_dict(), indent=2)
1264
1265
1266
1267
1268

    def to_sanitized_dict(self) -> Dict[str, Any]:
        """
        Sanitized serialization to use with TensorBoard鈥檚 hparams
        """
1269
        d = self.to_dict()
1270
1271
        d = {**d, **{"train_batch_size": self.train_batch_size, "eval_batch_size": self.eval_batch_size}}

1272
1273
1274
        valid_types = [bool, int, float, str]
        if is_torch_available():
            valid_types.append(torch.Tensor)
1275

1276
        return {k: v if type(v) in valid_types else str(v) for k, v in d.items()}
1277
1278
1279
1280
1281
1282


class ParallelMode(Enum):
    NOT_PARALLEL = "not_parallel"
    NOT_DISTRIBUTED = "not_distributed"
    DISTRIBUTED = "distributed"
Sylvain Gugger's avatar
Sylvain Gugger committed
1283
1284
    SAGEMAKER_MODEL_PARALLEL = "sagemaker_model_parallel"
    SAGEMAKER_DATA_PARALLEL = "sagemaker_data_parallel"
1285
    TPU = "tpu"