training_args.py 45.5 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Julien Chaumond's avatar
Julien Chaumond committed
15
import json
Julien Plu's avatar
Julien Plu committed
16
import os
17
import warnings
18
from dataclasses import asdict, dataclass, field
19
from enum import Enum
20
from typing import Any, Dict, List, Optional
Julien Chaumond's avatar
Julien Chaumond committed
21

22
from .debug_utils import DebugOption
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
from .file_utils import (
    cached_property,
Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
    is_sagemaker_dp_enabled,
    is_sagemaker_mp_enabled,
Sylvain Gugger's avatar
Sylvain Gugger committed
27
28
29
30
    is_torch_available,
    is_torch_tpu_available,
    torch_required,
)
31
from .trainer_utils import EvaluationStrategy, IntervalStrategy, SchedulerType, ShardedDDPOption
Lysandre Debut's avatar
Lysandre Debut committed
32
from .utils import logging
Julien Chaumond's avatar
Julien Chaumond committed
33
34
35
36
37


if is_torch_available():
    import torch

38
if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
39
40
    import torch_xla.core.xla_model as xm

Sylvain Gugger's avatar
Sylvain Gugger committed
41
if is_sagemaker_dp_enabled():
42
43
    import smdistributed.dataparallel.torch.distributed as sm_dist

Sylvain Gugger's avatar
Sylvain Gugger committed
44
45
46
47
48
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp

    smp.init()

Lysandre Debut's avatar
Lysandre Debut committed
49

Lysandre Debut's avatar
Lysandre Debut committed
50
logger = logging.get_logger(__name__)
51
52


Julien Plu's avatar
Julien Plu committed
53
54
55
56
57
58
59
60
61
62
63
def default_logdir() -> str:
    """
    Same default as PyTorch
    """
    import socket
    from datetime import datetime

    current_time = datetime.now().strftime("%b%d_%H-%M-%S")
    return os.path.join("runs", current_time + "_" + socket.gethostname())


64
65
66
@dataclass
class TrainingArguments:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
67
68
    TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop
    itself**.
69

70
71
72
    Using :class:`~transformers.HfArgumentParser` we can turn this class into `argparse
    <https://docs.python.org/3/library/argparse.html#module-argparse>`__ arguments that can be specified on the command
    line.
73
74
75
76
77
78
79
80

    Parameters:
        output_dir (:obj:`str`):
            The output directory where the model predictions and checkpoints will be written.
        overwrite_output_dir (:obj:`bool`, `optional`, defaults to :obj:`False`):
            If :obj:`True`, overwrite the content of the output directory. Use this to continue training if
            :obj:`output_dir` points to a checkpoint directory.
        do_train (:obj:`bool`, `optional`, defaults to :obj:`False`):
81
82
83
            Whether to run training or not. This argument is not directly used by :class:`~transformers.Trainer`, it's
            intended to be used by your training/evaluation scripts instead. See the `example scripts
            <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details.
84
        do_eval (:obj:`bool`, `optional`):
85
86
87
88
89
            Whether to run evaluation on the validation set or not. Will be set to :obj:`True` if
            :obj:`evaluation_strategy` is different from :obj:`"no"`. This argument is not directly used by
            :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
            the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
            details.
90
        do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`):
91
92
93
94
            Whether to run predictions on the test set or not. This argument is not directly used by
            :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
            the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
            details.
95
        evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"no"`):
96
97
98
99
100
101
            The evaluation strategy to adopt during training. Possible values are:

                * :obj:`"no"`: No evaluation is done during training.
                * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`.
                * :obj:`"epoch"`: Evaluation is done at the end of each epoch.

102
        prediction_loss_only (:obj:`bool`, `optional`, defaults to `False`):
103
            When performing evaluation and generating predictions, only returns the loss.
104
105
106
107
        per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8):
            The batch size per GPU/TPU core/CPU for training.
        per_device_eval_batch_size (:obj:`int`, `optional`, defaults to 8):
            The batch size per GPU/TPU core/CPU for evaluation.
108
        gradient_accumulation_steps (:obj:`int`, `optional`, defaults to 1):
109
            Number of updates steps to accumulate the gradients for, before performing a backward/update pass.
110
111
112
113
114
115

            .. warning::

                When using gradient accumulation, one step is counted as one step with backward pass. Therefore,
                logging, evaluation, save will be conducted every ``gradient_accumulation_steps * xxx_step`` training
                examples.
116
117
118
119
        eval_accumulation_steps (:obj:`int`, `optional`):
            Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If
            left unset, the whole predictions are accumulated on GPU/TPU before being moved to the CPU (faster but
            requires more memory).
120
        learning_rate (:obj:`float`, `optional`, defaults to 5e-5):
121
            The initial learning rate for :class:`~transformers.AdamW` optimizer.
122
        weight_decay (:obj:`float`, `optional`, defaults to 0):
Sylvain Gugger's avatar
Sylvain Gugger committed
123
            The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in
124
            :class:`~transformers.AdamW` optimizer.
125
        adam_beta1 (:obj:`float`, `optional`, defaults to 0.9):
126
            The beta1 hyperparameter for the :class:`~transformers.AdamW` optimizer.
127
        adam_beta2 (:obj:`float`, `optional`, defaults to 0.999):
128
            The beta2 hyperparameter for the :class:`~transformers.AdamW` optimizer.
129
        adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8):
130
            The epsilon hyperparameter for the :class:`~transformers.AdamW` optimizer.
131
132
133
        max_grad_norm (:obj:`float`, `optional`, defaults to 1.0):
            Maximum gradient norm (for gradient clipping).
        num_train_epochs(:obj:`float`, `optional`, defaults to 3.0):
Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
            Total number of training epochs to perform (if not an integer, will perform the decimal part percents of
            the last epoch before stopping training).
136
137
138
        max_steps (:obj:`int`, `optional`, defaults to -1):
            If set to a positive number, the total number of training steps to perform. Overrides
            :obj:`num_train_epochs`.
Sylvain Gugger's avatar
Sylvain Gugger committed
139
140
141
        lr_scheduler_type (:obj:`str` or :class:`~transformers.SchedulerType`, `optional`, defaults to :obj:`"linear"`):
            The scheduler type to use. See the documentation of :class:`~transformers.SchedulerType` for all possible
            values.
142
143
        warmup_ratio (:obj:`float`, `optional`, defaults to 0.0):
            Ratio of total training steps used for a linear warmup from 0 to :obj:`learning_rate`.
144
        warmup_steps (:obj:`int`, `optional`, defaults to 0):
145
146
            Number of steps used for a linear warmup from 0 to :obj:`learning_rate`. Overrides any effect of
            :obj:`warmup_ratio`.
147
        logging_dir (:obj:`str`, `optional`):
148
149
            `TensorBoard <https://www.tensorflow.org/tensorboard>`__ log directory. Will default to
            `runs/**CURRENT_DATETIME_HOSTNAME**`.
150
        logging_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"steps"`):
151
152
153
154
155
156
            The logging strategy to adopt during training. Possible values are:

                * :obj:`"no"`: No logging is done during training.
                * :obj:`"epoch"`: Logging is done at the end of each epoch.
                * :obj:`"steps"`: Logging is done every :obj:`logging_steps`.

157
        logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`):
Tiger's avatar
Tiger committed
158
            Whether to log and evaluate the first :obj:`global_step` or not.
159
        logging_steps (:obj:`int`, `optional`, defaults to 500):
160
            Number of update steps between two logs if :obj:`logging_strategy="steps"`.
161
162
163
164
165
166
167
        save_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"steps"`):
            The checkpoint save strategy to adopt during training. Possible values are:

                * :obj:`"no"`: No save is done during training.
                * :obj:`"epoch"`: Save is done at the end of each epoch.
                * :obj:`"steps"`: Save is done every :obj:`save_steps`.

168
        save_steps (:obj:`int`, `optional`, defaults to 500):
169
            Number of updates steps before two checkpoint saves if :obj:`save_strategy="steps"`.
170
171
172
173
        save_total_limit (:obj:`int`, `optional`):
            If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in
            :obj:`output_dir`.
        no_cuda (:obj:`bool`, `optional`, defaults to :obj:`False`):
Alan deLevie's avatar
Alan deLevie committed
174
            Whether to not use CUDA even when it is available or not.
175
        seed (:obj:`int`, `optional`, defaults to 42):
176
177
178
            Random seed that will be set at the beginning of training. To ensure reproducibility across runs, use the
            :func:`~transformers.Trainer.model_init` function to instantiate the model if it has some randomly
            initialized parameters.
179
        fp16 (:obj:`bool`, `optional`, defaults to :obj:`False`):
180
            Whether to use 16-bit (mixed) precision training instead of 32-bit training.
181
        fp16_opt_level (:obj:`str`, `optional`, defaults to 'O1'):
182
183
            For :obj:`fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details
            on the `Apex documentation <https://nvidia.github.io/apex/amp.html>`__.
184
185
186
187
        fp16_backend (:obj:`str`, `optional`, defaults to :obj:`"auto"`):
            The backend to use for mixed precision training. Must be one of :obj:`"auto"`, :obj:`"amp"` or
            :obj:`"apex"`. :obj:`"auto"` will use AMP or APEX depending on the PyTorch version detected, while the
            other choices will force the requested backend.
188
189
190
        fp16_full_eval (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to use full 16-bit precision evaluation instead of 32-bit. This will be faster and save memory but
            can harm metric values.
191
        local_rank (:obj:`int`, `optional`, defaults to -1):
192
            Rank of the process during distributed training.
193
        tpu_num_cores (:obj:`int`, `optional`):
Tiger's avatar
Tiger committed
194
            When training on TPU, the number of TPU cores (automatically passed by launcher script).
195
196
197
        dataloader_drop_last (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size)
            or not.
198
199
200
        eval_steps (:obj:`int`, `optional`):
            Number of update steps between two evaluations if :obj:`evaluation_strategy="steps"`. Will default to the
            same value as :obj:`logging_steps` if not set.
Chady Kamar's avatar
Chady Kamar committed
201
        dataloader_num_workers (:obj:`int`, `optional`, defaults to 0):
Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
            Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the
            main process.
204
        past_index (:obj:`int`, `optional`, defaults to -1):
205
            Some models like :doc:`TransformerXL <../model_doc/transformerxl>` or :doc:`XLNet <../model_doc/xlnet>` can
206
207
208
            make use of the past hidden states for their predictions. If this argument is set to a positive int, the
            ``Trainer`` will use the corresponding output (usually index 2) as the past state and feed it to the model
            at the next training step under the keyword argument ``mems``.
209
        run_name (:obj:`str`, `optional`):
210
            A descriptor for the run. Typically used for `wandb <https://www.wandb.com/>`_ logging.
211
        disable_tqdm (:obj:`bool`, `optional`):
212
213
214
            Whether or not to disable the tqdm progress bars and table of metrics produced by
            :class:`~transformers.notebook.NotebookTrainingTracker` in Jupyter Notebooks. Will default to :obj:`True`
            if the logging level is set to warn or lower (default), :obj:`False` otherwise.
215
        remove_unused_columns (:obj:`bool`, `optional`, defaults to :obj:`True`):
216
217
            If using :obj:`datasets.Dataset` datasets, whether or not to automatically remove the columns unused by the
            model forward method.
218

Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
221
            (Note that this behavior is not implemented for :class:`~transformers.TFTrainer` yet.)
        label_names (:obj:`List[str]`, `optional`):
            The list of keys in your dictionary of inputs that correspond to the labels.
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223

            Will eventually default to :obj:`["labels"]` except if the model used is one of the
Sylvain Gugger's avatar
Sylvain Gugger committed
224
            :obj:`XxxForQuestionAnswering` in which case it will default to :obj:`["start_positions",
Sylvain Gugger's avatar
Sylvain Gugger committed
225
226
227
            "end_positions"]`.
        load_best_model_at_end (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to load the best model found during training at the end of training.
228
229
230

            .. note::

231
232
                When set to :obj:`True`, the parameters :obj:`save_strategy` and :obj:`save_steps` will be ignored and
                the model will be saved after each evaluation.
Sylvain Gugger's avatar
Sylvain Gugger committed
233
        metric_for_best_model (:obj:`str`, `optional`):
234
235
236
237
238
            Use in conjunction with :obj:`load_best_model_at_end` to specify the metric to use to compare two different
            models. Must be the name of a metric returned by the evaluation with or without the prefix :obj:`"eval_"`.
            Will default to :obj:`"loss"` if unspecified and :obj:`load_best_model_at_end=True` (to use the evaluation
            loss).

Tiger's avatar
Tiger committed
239
            If you set this value, :obj:`greater_is_better` will default to :obj:`True`. Don't forget to set it to
Sylvain Gugger's avatar
Sylvain Gugger committed
240
241
242
243
            :obj:`False` if your metric is better when lower.
        greater_is_better (:obj:`bool`, `optional`):
            Use in conjunction with :obj:`load_best_model_at_end` and :obj:`metric_for_best_model` to specify if better
            models should have a greater metric or not. Will default to:
244
245
246
247

            - :obj:`True` if :obj:`metric_for_best_model` is set to a value that isn't :obj:`"loss"` or
              :obj:`"eval_loss"`.
            - :obj:`False` if :obj:`metric_for_best_model` is not set, or set to :obj:`"loss"` or :obj:`"eval_loss"`.
248
        ignore_data_skip (:obj:`bool`, `optional`, defaults to :obj:`False`):
249
250
251
            When resuming training, whether or not to skip the epochs and batches to get the data loading at the same
            stage as in the previous training. If set to :obj:`True`, the training will begin faster (as that skipping
            step can take a long time) but will not yield the same results as the interrupted training would have.
252
        sharded_ddp (:obj:`bool`, :obj:`str` or list of :class:`~transformers.trainer_utils.ShardedDDPOption`, `optional`, defaults to :obj:`False`):
253
254
            Use Sharded DDP training from `FairScale <https://github.com/facebookresearch/fairscale>`__ (in distributed
            training only). This is an experimental feature.
255
256
257
258
259
260
261
262
263
264
265
266
267

            A list of options along the following:

            - :obj:`"simple"`: to use first instance of sharded DDP released by fairscale (:obj:`ShardedDDP`) similar
              to ZeRO-2.
            - :obj:`"zero_dp_2"`: to use the second instance of sharded DPP released by fairscale
              (:obj:`FullyShardedDDP`) in Zero-2 mode (with :obj:`reshard_after_forward=False`).
            - :obj:`"zero_dp_3"`: to use the second instance of sharded DPP released by fairscale
              (:obj:`FullyShardedDDP`) in Zero-3 mode (with :obj:`reshard_after_forward=True`).
            - :obj:`"offload"`: to add ZeRO-offload (only compatible with :obj:`"zero_dp_2"` and :obj:`"zero_dp_3"`).

            If a string is passed, it will be split on space. If a bool is passed, it will be converted to an empty
            list for :obj:`False` and :obj:`["simple"]` for :obj:`True`.
268
        deepspeed (:obj:`str` or :obj:`dict`, `optional`):
269
            Use `Deepspeed <https://github.com/microsoft/deepspeed>`__. This is an experimental feature and its API may
270
271
            evolve in the future. The value is either the location of DeepSpeed json config file (e.g.,
            ``ds_config.json``) or an already loaded json file as a :obj:`dict`"
Sylvain Gugger's avatar
Sylvain Gugger committed
272
273
274
275
        label_smoothing_factor (:obj:`float`, `optional`, defaults to 0.0):
            The label smoothing factor to use. Zero means no label smoothing, otherwise the underlying onehot-encoded
            labels are changed from 0s and 1s to :obj:`label_smoothing_factor/num_labels` and :obj:`1 -
            label_smoothing_factor + label_smoothing_factor/num_labels` respectively.
276
277
278
279
280
281
282
283
284
285
        debug (:obj:`str` or list of :class:`~transformers.debug_utils.DebugOption`, `optional`, defaults to :obj:`""`):
            Enable one or more debug features. This is an experimental feature.

            Possible options are:

            - :obj:`"underflow_overflow"`: detects overflow in model's input/outputs and reports the last frames that
              led to the event
            - :obj:`"tpu_metrics_debug"`: print debug metrics on TPU

            The options should be separated by whitespaces.
Sylvain Gugger's avatar
Sylvain Gugger committed
286
287
288
        adafactor (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to use the :class:`~transformers.Adafactor` optimizer instead of
            :class:`~transformers.AdamW`.
289
        group_by_length (:obj:`bool`, `optional`, defaults to :obj:`False`):
JohnnyC08's avatar
JohnnyC08 committed
290
            Whether or not to group together samples of roughly the same length in the training dataset (to minimize
291
            padding applied and be more efficient). Only useful if applying dynamic padding.
292
293
294
295
        length_column_name (:obj:`str`, `optional`, defaults to :obj:`"length"`):
            Column name for precomputed lengths. If the column exists, grouping by length will use these values rather
            than computing them on train startup. Ignored unless :obj:`group_by_length` is :obj:`True` and the dataset
            is an instance of :obj:`Dataset`.
296
        report_to (:obj:`str` or :obj:`List[str]`, `optional`, defaults to :obj:`"all"`):
297
            The list of integrations to report the results and logs to. Supported platforms are :obj:`"azure_ml"`,
298
299
            :obj:`"comet_ml"`, :obj:`"mlflow"`, :obj:`"tensorboard"` and :obj:`"wandb"`. Use :obj:`"all"` to report to
            all integrations installed, :obj:`"none"` for no integrations.
300
301
        ddp_find_unused_parameters (:obj:`bool`, `optional`):
            When using distributed training, the value of the flag :obj:`find_unused_parameters` passed to
302
            :obj:`DistributedDataParallel`. Will default to :obj:`False` if gradient checkpointing is used, :obj:`True`
303
            otherwise.
Sylvain Gugger's avatar
Sylvain Gugger committed
304
        dataloader_pin_memory (:obj:`bool`, `optional`, defaults to :obj:`True`):
305
            Whether you want to pin memory in data loaders or not. Will default to :obj:`True`.
306
307
308
        skip_memory_metrics (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to skip adding of memory profiler reports to metrics. This is skipped by default because it slows
            down the training and evaluation speed.
Sylvain Gugger's avatar
Sylvain Gugger committed
309
310
311
312
313
        push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to upload the trained model to the hub after training. This argument is not directly used by
            :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
            the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
            details.
314
315
316
317
318
        resume_from_checkpoint (:obj:`str`, `optional`):
            The path to a folder with a valid checkpoint for your model. This argument is not directly used by
            :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
            the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
            details.
319
320
    """

321
    output_dir: str = field(
322
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
323
324
    )
    overwrite_output_dir: bool = field(
325
326
327
328
329
330
331
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory."
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
332
333
334
    )

    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
335
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
Julien Chaumond's avatar
Julien Chaumond committed
336
    do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."})
337
    evaluation_strategy: IntervalStrategy = field(
338
        default="no",
Sylvain Gugger's avatar
Sylvain Gugger committed
339
        metadata={"help": "The evaluation strategy to use."},
340
    )
341
    prediction_loss_only: bool = field(
Lysandre's avatar
Lysandre committed
342
343
        default=False,
        metadata={"help": "When performing evaluation and predictions, only returns the loss."},
344
    )
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )

    per_gpu_train_batch_size: Optional[int] = field(
        default=None,
        metadata={
            "help": "Deprecated, the use of `--per_device_train_batch_size` is preferred. "
            "Batch size per GPU/TPU core/CPU for training."
        },
    )
    per_gpu_eval_batch_size: Optional[int] = field(
        default=None,
        metadata={
            "help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred."
            "Batch size per GPU/TPU core/CPU for evaluation."
        },
    )

368
    gradient_accumulation_steps: int = field(
369
370
        default=1,
        metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."},
371
    )
372
373
374
375
    eval_accumulation_steps: Optional[int] = field(
        default=None,
        metadata={"help": "Number of predictions steps to accumulate before moving the tensors to the CPU."},
    )
376

377
378
379
380
381
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
382
383
384
385
386
387
388
    max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})

    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    max_steps: int = field(
        default=-1,
        metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."},
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
389
390
391
392
    lr_scheduler_type: SchedulerType = field(
        default="linear",
        metadata={"help": "The scheduler type to use."},
    )
393
394
395
    warmup_ratio: float = field(
        default=0.0, metadata={"help": "Linear warmup over warmup_ratio fraction of total steps."}
    )
396
397
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})

Julien Plu's avatar
Julien Plu committed
398
    logging_dir: Optional[str] = field(default_factory=default_logdir, metadata={"help": "Tensorboard log dir."})
399
    logging_strategy: IntervalStrategy = field(
400
401
402
        default="steps",
        metadata={"help": "The logging strategy to use."},
    )
403
    logging_first_step: bool = field(default=False, metadata={"help": "Log the first global_step"})
404
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
405
406
407
408
    save_strategy: IntervalStrategy = field(
        default="steps",
        metadata={"help": "The checkpoint save strategy to use."},
    )
409
410
411
412
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    save_total_limit: Optional[int] = field(
        default=None,
        metadata={
413
414
415
416
            "help": (
                "Limit the total amount of checkpoints."
                "Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints"
            )
417
418
        },
    )
Lysandre Debut's avatar
Lysandre Debut committed
419
    no_cuda: bool = field(default=False, metadata={"help": "Do not use CUDA even when it is available"})
420
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
421
422
423

    fp16: bool = field(
        default=False,
424
        metadata={"help": "Whether to use 16-bit (mixed) precision instead of 32-bit"},
425
426
427
428
    )
    fp16_opt_level: str = field(
        default="O1",
        metadata={
429
430
431
432
            "help": (
                "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                "See details at https://nvidia.github.io/apex/amp.html"
            )
433
434
        },
    )
435
436
437
438
    fp16_backend: str = field(
        default="auto",
        metadata={"help": "The backend to be used for mixed precision.", "choices": ["auto", "amp", "apex"]},
    )
439
440
441
442
    fp16_full_eval: bool = field(
        default=False,
        metadata={"help": "Whether to use full 16-bit precision evaluation instead of 32-bit"},
    )
443
    local_rank: int = field(default=-1, metadata={"help": "For distributed training: local_rank"})
Julien Chaumond's avatar
Julien Chaumond committed
444

Lysandre Debut's avatar
Lysandre Debut committed
445
446
447
    tpu_num_cores: Optional[int] = field(
        default=None, metadata={"help": "TPU: Number of TPU cores (automatically passed by launcher script)"}
    )
448
449
    tpu_metrics_debug: bool = field(
        default=False,
450
451
452
453
454
455
456
457
458
459
460
        metadata={
            "help": "Deprecated, the use of `--debug tpu_metrics_debug` is preferred. TPU: Whether to print debug metrics"
        },
    )
    debug: str = field(
        default="",
        metadata={
            "help": "Whether or not to enable debug mode. Current options: "
            "`underflow_overflow` (Detect underflow and overflow in activations and weights), "
            "`tpu_metrics_debug` (print debug metrics on TPU)."
        },
461
    )
Lysandre Debut's avatar
Lysandre Debut committed
462

Setu Shah's avatar
Setu Shah committed
463
464
465
    dataloader_drop_last: bool = field(
        default=False, metadata={"help": "Drop the last incomplete batch if it is not divisible by the batch size."}
    )
466
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
Chady Kamar's avatar
Chady Kamar committed
467
468
    dataloader_num_workers: int = field(
        default=0,
Sylvain Gugger's avatar
Sylvain Gugger committed
469
470
471
        metadata={
            "help": "Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process."
        },
Chady Kamar's avatar
Chady Kamar committed
472
    )
Setu Shah's avatar
Setu Shah committed
473

474
475
476
477
478
    past_index: int = field(
        default=-1,
        metadata={"help": "If >=0, uses the corresponding part of the output as the past state for next step."},
    )

479
480
481
    run_name: Optional[str] = field(
        default=None, metadata={"help": "An optional descriptor for the run. Notably used for wandb logging."}
    )
482
483
484
485
    disable_tqdm: Optional[bool] = field(
        default=None, metadata={"help": "Whether or not to disable the tqdm progress bars."}
    )

486
487
488
    remove_unused_columns: Optional[bool] = field(
        default=True, metadata={"help": "Remove columns not required by the model when using an nlp.Dataset."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
489
490
491
492
    label_names: Optional[List[str]] = field(
        default=None, metadata={"help": "The list of keys in your dictionary of inputs that correspond to the labels."}
    )

493
494
495
496
497
498
499
500
501
502
    load_best_model_at_end: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to load the best model found during training at the end of training."},
    )
    metric_for_best_model: Optional[str] = field(
        default=None, metadata={"help": "The metric to use to compare two different models."}
    )
    greater_is_better: Optional[bool] = field(
        default=None, metadata={"help": "Whether the `metric_for_best_model` should be maximized or not."}
    )
503
504
505
506
507
508
    ignore_data_skip: bool = field(
        default=False,
        metadata={
            "help": "When resuming training, whether or not to skip the first epochs and batches to get to the same training data."
        },
    )
509
510
511
512
513
    sharded_ddp: str = field(
        default="",
        metadata={
            "help": "Whether or not to use sharded DDP training (in distributed training only). The base option "
            "should be `simple`, `zero_dp_2` or `zero_dp_3` and you can add CPU-offload to `zero_dp_2` or `zero_dp_3` "
514
515
            "like this: zero_dp_2 offload` or `zero_dp_3 offload`. You can add auto-wrap to `zero_dp_2` or "
            "with the same syntax: zero_dp_2 auto_wrap` or `zero_dp_3 auto_wrap`.",
516
        },
517
    )
518
519
    deepspeed: Optional[str] = field(
        default=None,
520
521
522
        metadata={
            "help": "Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already loaded json file as a dict"
        },
523
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
524
525
526
    label_smoothing_factor: float = field(
        default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."}
    )
527
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
528
529
530
531
    group_by_length: bool = field(
        default=False,
        metadata={"help": "Whether or not to group samples of roughly the same length together when batching."},
    )
532
533
534
535
    length_column_name: Optional[str] = field(
        default="length",
        metadata={"help": "Column name with precomputed lengths to use when grouping by length."},
    )
536
537
538
    report_to: Optional[List[str]] = field(
        default=None, metadata={"help": "The list of integrations to report the results and logs to."}
    )
539
540
541
542
543
544
545
    ddp_find_unused_parameters: Optional[bool] = field(
        default=None,
        metadata={
            "help": "When using distributed training, the value of the flag `find_unused_parameters` passed to "
            "`DistributedDataParallel`."
        },
    )
546
547
548
    dataloader_pin_memory: bool = field(
        default=True, metadata={"help": "Whether or not to pin memory for DataLoader."}
    )
549
    skip_memory_metrics: bool = field(
550
        default=True, metadata={"help": "Whether or not to skip adding of memory profiler reports to metrics."}
551
    )
552
553
554
    use_legacy_prediction_loop: bool = field(
        default=False, metadata={"help": "Whether or not to use the legacy prediction_loop in the Trainer."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
555
556
557
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
558
559
560
561
    resume_from_checkpoint: Optional[str] = field(
        default=None,
        metadata={"help": "The path to a folder with a valid checkpoint for your model."},
    )
562
    _n_gpu: int = field(init=False, repr=False, default=-1)
Sylvain Gugger's avatar
Sylvain Gugger committed
563
564
565
566
    mp_parameters: str = field(
        default="",
        metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in Trainer"},
    )
567

Sylvain Gugger's avatar
Sylvain Gugger committed
568
    def __post_init__(self):
569
570
571
572
573
574
        # Handle --use_env option in torch.distributed.launch (local_rank not passed as an arg then).
        # This needs to happen before any call to self.device or self.n_gpu.
        env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
        if env_local_rank != -1 and env_local_rank != self.local_rank:
            self.local_rank = env_local_rank

575
576
577
578
579
580
581
582
        # expand paths, if not os.makedirs("~/bar") will make directory
        # in the current directory instead of the actual home
        # 聽see https://github.com/huggingface/transformers/issues/10628
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)
        if self.logging_dir is not None:
            self.logging_dir = os.path.expanduser(self.logging_dir)

Sylvain Gugger's avatar
Sylvain Gugger committed
583
584
        if self.disable_tqdm is None:
            self.disable_tqdm = logger.getEffectiveLevel() > logging.WARN
585
586
587
588
589
590

        if isinstance(self.evaluation_strategy, EvaluationStrategy):
            warnings.warn(
                "using `EvaluationStrategy` for `evaluation_strategy` is deprecated and will be removed in version 5 of 馃 Transformers. Use `IntervalStrategy` instead",
                FutureWarning,
            )
591
592
            # Go back to the underlying string or we won't be able to instantiate `IntervalStrategy` on it.
            self.evaluation_strategy = self.evaluation_strategy.value
593
594
595
596
597

        self.evaluation_strategy = IntervalStrategy(self.evaluation_strategy)
        self.logging_strategy = IntervalStrategy(self.logging_strategy)
        self.save_strategy = IntervalStrategy(self.save_strategy)

Sylvain Gugger's avatar
Sylvain Gugger committed
598
        self.lr_scheduler_type = SchedulerType(self.lr_scheduler_type)
599
        if self.do_eval is False and self.evaluation_strategy != IntervalStrategy.NO:
600
            self.do_eval = True
601
602
        if self.eval_steps is None:
            self.eval_steps = self.logging_steps
603

604
605
606
607
        if self.load_best_model_at_end and self.metric_for_best_model is None:
            self.metric_for_best_model = "loss"
        if self.greater_is_better is None and self.metric_for_best_model is not None:
            self.greater_is_better = self.metric_for_best_model not in ["loss", "eval_loss"]
608
609
        if self.run_name is None:
            self.run_name = self.output_dir
610

611
612
613
614
        if is_torch_available() and self.device.type != "cuda" and (self.fp16 or self.fp16_full_eval):
            raise ValueError(
                "Mixed precision training with AMP or APEX (`--fp16`) and FP16 evaluation can only be used on CUDA devices."
            )
615
        if self.report_to is None:
616
617
618
619
620
621
622
            logger.info(
                "The default value for the training argument `--report_to` will change in v5 (from all installed "
                "integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as "
                "now. You should start updating your code and make this info disappear :-)."
            )
            self.report_to = "all"
        if self.report_to == "all" or self.report_to == ["all"]:
623
624
625
626
            # Import at runtime to avoid a circular import.
            from .integrations import get_available_reporting_integrations

            self.report_to = get_available_reporting_integrations()
627
628
629
630
        elif self.report_to == "none" or self.report_to == ["none"]:
            self.report_to = []
        elif not isinstance(self.report_to, list):
            self.report_to = [self.report_to]
631

632
633
634
635
636
637
638
        if self.warmup_ratio < 0 or self.warmup_ratio > 1:
            raise ValueError("warmup_ratio must lie in range [0,1]")
        elif self.warmup_ratio > 0 and self.warmup_steps > 0:
            logger.info(
                "Both warmup_ratio and warmup_steps given, warmup_steps will override any effect of warmup_ratio during training"
            )

639
640
641
642
643
644
645
646
647
        if isinstance(self.sharded_ddp, bool):
            self.sharded_ddp = "simple" if self.sharded_ddp else ""
        if isinstance(self.sharded_ddp, str):
            self.sharded_ddp = [ShardedDDPOption(s) for s in self.sharded_ddp.split()]
        if self.sharded_ddp == [ShardedDDPOption.OFFLOAD]:
            raise ValueError(
                "`--sharded_ddp offload` can't work on its own. It needs to be added to `--sharded_ddp zero_dp_2` or "
                '`--sharded_ddp zero_dp_3`. For example, `--sharded_ddp "zero_dp_2 offload"`.'
            )
648
        elif len(self.sharded_ddp) > 1 and ShardedDDPOption.SIMPLE in self.sharded_ddp:
649
650
651
652
            raise ValueError("`--sharded_ddp simple` is not compatible with any other option.")
        elif ShardedDDPOption.ZERO_DP_2 in self.sharded_ddp and ShardedDDPOption.ZERO_DP_3 in self.sharded_ddp:
            raise ValueError("`--sharded_ddp zero_dp_2` is not compatible with `--sharded_ddp zero_dp_3`.")

653
654
655
656
657
658
659
660
661
662
        if self.tpu_metrics_debug:
            warnings.warn(
                "using `--tpu_metrics_debug` is deprecated and will be removed in version 5 of 馃 Transformers. Use `--debug tpu_metrics_debug` instead",
                FutureWarning,
            )
            self.debug += " tpu_metrics_debug"
            self.tpu_metrics_debug = False
        if isinstance(self.debug, str):
            self.debug = [DebugOption(s) for s in self.debug.split()]

663
664
665
666
667
668
669
670
        if self.deepspeed:
            # - must be run very last in arg parsing, since it will use a lot of these settings.
            # - must be run before the model is created.
            from transformers.integrations import DeepSpeedConfigHF

            # will be used later by the Trainer (leave self.deepspeed unmodified in case a user relies on it not to be modified)
            self.deepspeed_config_hf = DeepSpeedConfigHF(self)

671
672
673
674
675
676
677
678
    def __repr__(self):
        # We override the default repr to remove deprecated arguments from the repr. This method should be removed once
        # those deprecated arguments are removed form TrainingArguments. (TODO: v5)
        self_as_dict = asdict(self)
        del self_as_dict["per_gpu_train_batch_size"]
        del self_as_dict["per_gpu_eval_batch_size"]
        attrs_as_str = [f"{k}={v}" for k, v in self_as_dict.items()]
        return f"{self.__class__.__name__}({', '.join(attrs_as_str)})"
679

Julien Chaumond's avatar
Julien Chaumond committed
680
681
    @property
    def train_batch_size(self) -> int:
682
683
684
        """
        The actual batch size for training (may differ from :obj:`per_gpu_train_batch_size` in distributed training).
        """
685
686
687
688
689
690
        if self.per_gpu_train_batch_size:
            logger.warning(
                "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future "
                "version. Using `--per_device_train_batch_size` is preferred."
            )
        per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size
691
        train_batch_size = per_device_batch_size * max(1, self.n_gpu)
692
        return train_batch_size
Julien Chaumond's avatar
Julien Chaumond committed
693
694
695

    @property
    def eval_batch_size(self) -> int:
696
697
698
        """
        The actual batch size for evaluation (may differ from :obj:`per_gpu_eval_batch_size` in distributed training).
        """
699
700
701
702
703
704
        if self.per_gpu_eval_batch_size:
            logger.warning(
                "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future "
                "version. Using `--per_device_eval_batch_size` is preferred."
            )
        per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size
705
        eval_batch_size = per_device_batch_size * max(1, self.n_gpu)
706
        return eval_batch_size
Julien Chaumond's avatar
Julien Chaumond committed
707
708
709

    @cached_property
    @torch_required
710
    def _setup_devices(self) -> "torch.device":
Julien Chaumond's avatar
Julien Chaumond committed
711
712
713
        logger.info("PyTorch: setting up devices")
        if self.no_cuda:
            device = torch.device("cpu")
714
            self._n_gpu = 0
715
        elif is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
716
            device = xm.xla_device()
717
            self._n_gpu = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
718
719
720
721
722
        elif is_sagemaker_mp_enabled():
            local_rank = smp.local_rank()
            device = torch.device("cuda", local_rank)
            self._n_gpu = 1
        elif is_sagemaker_dp_enabled():
723
724
            sm_dist.init_process_group()
            self.local_rank = sm_dist.get_local_rank()
Sylvain Gugger's avatar
Sylvain Gugger committed
725
726
            device = torch.device("cuda", self.local_rank)
            self._n_gpu = 1
727
728
729
730
731
732
733
734
735
736
737
738
        elif self.deepspeed:
            # deepspeed performs its own DDP internally, and requires the program to be started with:
            # deepspeed  ./program.py
            # rather than:
            # python -m torch.distributed.launch --nproc_per_node=2 ./program.py
            from .integrations import is_deepspeed_available

            if not is_deepspeed_available():
                raise ImportError("--deepspeed requires deepspeed: `pip install deepspeed`.")
            import deepspeed

            deepspeed.init_distributed()
739
740
741
742
743
744

            # workaround for setups like notebooks where the launcher can't be used,
            # but deepspeed requires a dist env.
            # env LOCAL_RANK could be set manually by the user, or via init_distributed if mpi4py is installed
            self.local_rank = int(os.environ.get("LOCAL_RANK", "-1"))

745
746
            device = torch.device("cuda", self.local_rank)
            self._n_gpu = 1
Julien Chaumond's avatar
Julien Chaumond committed
747
748
749
        elif self.local_rank == -1:
            # if n_gpu is > 1 we'll use nn.DataParallel.
            # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
750
751
752
753
754
            # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
            # trigger an error that a device index is missing. Index 0 takes into account the
            # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
            # will use the first GPU in that env, i.e. GPU#1
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
755
756
            # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
            # the default value.
757
            self._n_gpu = torch.cuda.device_count()
Julien Chaumond's avatar
Julien Chaumond committed
758
759
        else:
            # Here, we'll use torch.distributed.
760
            # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
761
            torch.distributed.init_process_group(backend="nccl")
Julien Chaumond's avatar
Julien Chaumond committed
762
            device = torch.device("cuda", self.local_rank)
763
            self._n_gpu = 1
764
765
766
767

        if device.type == "cuda":
            torch.cuda.set_device(device)

768
        return device
Julien Chaumond's avatar
Julien Chaumond committed
769
770
771
772

    @property
    @torch_required
    def device(self) -> "torch.device":
773
774
775
        """
        The device used by this process.
        """
776
        return self._setup_devices
Julien Chaumond's avatar
Julien Chaumond committed
777
778
779
780

    @property
    @torch_required
    def n_gpu(self):
781
782
783
784
785
786
787
        """
        The number of GPUs used by this process.

        Note:
            This will only be greater than one when you have multiple GPUs available but are not using distributed
            training. For distributed training, it will always be 1.
        """
788
789
790
        # Make sure `self._n_gpu` is properly setup.
        _ = self._setup_devices
        return self._n_gpu
Julien Chaumond's avatar
Julien Chaumond committed
791

792
793
794
795
796
797
798
799
    @property
    @torch_required
    def parallel_mode(self):
        """
        The current mode used for parallelism if multiple GPUs/TPU cores are available. One of:

        - :obj:`ParallelMode.NOT_PARALLEL`: no parallelism (CPU or one GPU).
        - :obj:`ParallelMode.NOT_DISTRIBUTED`: several GPUs in one single process (uses :obj:`torch.nn.DataParallel`).
800
        - :obj:`ParallelMode.DISTRIBUTED`: several GPUs, each having its own process (uses
801
802
803
804
805
          :obj:`torch.nn.DistributedDataParallel`).
        - :obj:`ParallelMode.TPU`: several TPU cores.
        """
        if is_torch_tpu_available():
            return ParallelMode.TPU
Sylvain Gugger's avatar
Sylvain Gugger committed
806
807
808
809
        elif is_sagemaker_mp_enabled():
            return ParallelMode.SAGEMAKER_MODEL_PARALLEL
        elif is_sagemaker_dp_enabled():
            return ParallelMode.SAGEMAKER_DATA_PARALLEL
810
811
812
813
814
815
816
        elif self.local_rank != -1:
            return ParallelMode.DISTRIBUTED
        elif self.n_gpu > 1:
            return ParallelMode.NOT_DISTRIBUTED
        else:
            return ParallelMode.NOT_PARALLEL

817
818
819
820
821
822
823
824
    @property
    @torch_required
    def world_size(self):
        """
        The number of processes used in parallel.
        """
        if is_torch_tpu_available():
            return xm.xrt_world_size()
Sylvain Gugger's avatar
Sylvain Gugger committed
825
826
827
        elif is_sagemaker_mp_enabled():
            return smp.dp_size()
        elif is_sagemaker_dp_enabled():
828
829
830
831
832
            return sm_dist.get_world_size()
        elif self.local_rank != -1:
            return torch.distributed.get_world_size()
        return 1

833
834
835
836
837
838
839
840
    @property
    @torch_required
    def process_index(self):
        """
        The number of processes used in parallel.
        """
        if is_torch_tpu_available():
            return xm.get_ordinal()
Sylvain Gugger's avatar
Sylvain Gugger committed
841
842
843
        elif is_sagemaker_mp_enabled():
            return smp.dp_rank()
        elif is_sagemaker_dp_enabled():
844
845
846
847
848
            return sm_dist.get_rank()
        elif self.local_rank != -1:
            return torch.distributed.get_rank()
        return 0

849
850
851
852
853
    @property
    def place_model_on_device(self):
        """
        Can be subclassed and overridden for some specific integrations.
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
854
        return not is_sagemaker_mp_enabled()
855

Sylvain Gugger's avatar
Sylvain Gugger committed
856
857
858
859
860
    @property
    def _no_sync_in_gradient_accumulation(self):
        """
        Whether or not to use no_sync for the gradients when doing gradient accumulation.
        """
861
        return not (self.deepspeed or is_sagemaker_dp_enabled() or is_sagemaker_mp_enabled())
Sylvain Gugger's avatar
Sylvain Gugger committed
862

863
864
865
866
    def to_dict(self):
        """
        Serializes this instance while replace `Enum` by their values (for JSON serialization support).
        """
867
        d = asdict(self)
868
869
870
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
871
872
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
873
874
        return d

Julien Chaumond's avatar
Julien Chaumond committed
875
876
877
878
    def to_json_string(self):
        """
        Serializes this instance to a JSON string.
        """
879
        return json.dumps(self.to_dict(), indent=2)
880
881
882
883
884

    def to_sanitized_dict(self) -> Dict[str, Any]:
        """
        Sanitized serialization to use with TensorBoard鈥檚 hparams
        """
885
        d = self.to_dict()
886
887
        d = {**d, **{"train_batch_size": self.train_batch_size, "eval_batch_size": self.eval_batch_size}}

888
889
890
        valid_types = [bool, int, float, str]
        if is_torch_available():
            valid_types.append(torch.Tensor)
891

892
        return {k: v if type(v) in valid_types else str(v) for k, v in d.items()}
893
894
895
896
897
898


class ParallelMode(Enum):
    NOT_PARALLEL = "not_parallel"
    NOT_DISTRIBUTED = "not_distributed"
    DISTRIBUTED = "distributed"
Sylvain Gugger's avatar
Sylvain Gugger committed
899
900
    SAGEMAKER_MODEL_PARALLEL = "sagemaker_model_parallel"
    SAGEMAKER_DATA_PARALLEL = "sagemaker_data_parallel"
901
    TPU = "tpu"