check_repo.py 27.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
25
from transformers import is_flax_available, is_tf_available, is_torch_available
from transformers.file_utils import ENV_VARS_TRUE_VALUES
26
27
from transformers.models.auto import get_values

28
29
30
31
32

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
33
PATH_TO_DOC = "docs/source"
34

35
36
37
38
39
40
41
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
    "T5Stack",
    "TFDPRSpanPredictor",
]

42
43
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
44
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
45
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
46
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
47
48
49
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
50
51
52
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
53
54
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
55
56
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
57
58
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
59
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
60
    "BartEncoder",  # Building part of bigger (tested) model.
61
    "BertLMHeadModel",  # Needs to be setup as decoder.
62
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
63
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
64
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
65
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
66
    "MBartEncoder",  # Building part of bigger (tested) model.
67
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
68
69
70
71
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
72
    "PegasusEncoder",  # Building part of bigger (tested) model.
73
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
74
    "DPREncoder",  # Building part of bigger (tested) model.
75
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
76
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
77
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
78
    "TFDPREncoder",  # Building part of bigger (tested) model.
79
80
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
81
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
82
    "SeparableConv1D",  # Building part of bigger (tested) model.
83
84
85
86
87
88
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
    "test_modeling_camembert.py",
89
    "test_modeling_flax_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
90
    "test_modeling_mbart.py",
Patrick von Platen's avatar
Patrick von Platen committed
91
    "test_modeling_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
92
    "test_modeling_pegasus.py",
93
    "test_modeling_tf_camembert.py",
Sylvain Gugger's avatar
Sylvain Gugger committed
94
    "test_modeling_tf_mt5.py",
95
    "test_modeling_tf_xlm_roberta.py",
Weizhen's avatar
Weizhen committed
96
    "test_modeling_xlm_prophetnet.py",
97
    "test_modeling_xlm_roberta.py",
Suraj Patil's avatar
Suraj Patil committed
98
99
    "test_modeling_vision_text_dual_encoder.py",
    "test_modeling_flax_vision_text_dual_encoder.py",
100
101
]

102
103
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
104
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
105
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
106
107
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
108
109
    "SegformerDecodeHead",
    "SegformerForSemanticSegmentation",
110
    "BeitForSemanticSegmentation",
Kamal Raj's avatar
Kamal Raj committed
111
    "FlaxBeitForMaskedImageModeling",
NielsRogge's avatar
NielsRogge committed
112
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
113
114
    "CLIPTextModel",
    "CLIPVisionModel",
Yih-Dar's avatar
Yih-Dar committed
115
116
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
117
118
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
119
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
120
    "DetrForSegmentation",
121
122
123
    "DPRReader",
    "FlaubertForQuestionAnswering",
    "GPT2DoubleHeadsModel",
Ryokan RI's avatar
Ryokan RI committed
124
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
125
126
127
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
128
129
130
131
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
132
    "TFDPRReader",
133
134
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
135
136
137
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
138
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
139
    "HubertForCTC",
140
141
    "SEWForCTC",
    "SEWDForCTC",
142
143
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
144
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
145
146
147
148
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
149
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
150
    "TFHubertForCTC",
151
152
]

153
154
155
156
157
158
159
160
161
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


182
183
184
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
185
    """Get the model modules inside the transformers library."""
186
187
188
189
190
191
192
193
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
194
        "modeling_flax_auto",
195
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
196
        "modeling_flax_utils",
197
        "modeling_speech_encoder_decoder",
198
        "modeling_flax_vision_encoder_decoder",
199
200
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
201
        "modeling_tf_encoder_decoder",
202
203
204
205
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
206
        "modeling_tf_vision_encoder_decoder",
207
        "modeling_vision_encoder_decoder",
208
209
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
210
211
212
213
214
215
216
217
218
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
219
220
221
    return modules


222
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
223
    """Get the objects in module that are models."""
224
    models = []
225
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
226
    for attr_name in dir(module):
227
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
228
229
230
231
232
233
234
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


265
266
267
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Patrick von Platen's avatar
Patrick von Platen committed
268
    """Get the model test files."""
269
270
271
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
272
        "test_modeling_flax_encoder_decoder",
273
274
        "test_modeling_marian",
        "test_modeling_tf_common",
275
        "test_modeling_tf_encoder_decoder",
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    ]
    test_files = []
    for filename in os.listdir(PATH_TO_TESTS):
        if (
            os.path.isfile(f"{PATH_TO_TESTS}/{filename}")
            and filename.startswith("test_modeling")
            and not os.path.splitext(filename)[0] in _ignore_files
        ):
            test_files.append(filename)
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
291
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
292
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
293
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
294
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
295
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
296
297
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
298
    if len(all_models) > 0:
299
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
300
301
302
303
304
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
305
306
307
308
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
309
    """Check models defined in module are tested in test_file."""
310
    # XxxPreTrainedModel are not tested
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
334
    """Check all models are properly tested."""
335
336
337
338
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
339
        test_file = f"test_{module.__name__.split('.')[-1]}.py"
340
341
342
343
344
345
346
347
348
        if test_file not in test_files:
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


349
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
350
    """Return the list of all models in at least one auto class."""
351
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
352
353
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
354
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
355
356
357
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
358
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
359
360
361
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
362
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
363
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
364
    return [cls for cls in result]
365
366


367
368
369
370
371
372
373
374
375
376
377
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


378
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
379
    """Check models defined in module are each in an auto class."""
380
381
382
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
383
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
384
385
386
387
388
389
390
391
392
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
393
    """Check all models are each in an auto class."""
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
415
416
417
418
419
420
421
422
423
424
425
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
426
427
428
429
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
430
    """Check that in the test file `filename` the slow decorator is always last."""
431
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
448
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
449
450
451
452
453
454
455
456
457
458
459
460
461
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


462
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
463
    """Parse the content of all doc files to detect which classes and functions it documents"""
464
465
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
466
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
467
468
469
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
470
471
472
473
474
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
475
476
477
478
479
480
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
481
    "BartPretrainedModel",
482
483
    "DataCollator",
    "DataCollatorForSOP",
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
499
    "TFBartPretrainedModel",
500
501
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
502
    "Wav2Vec2ForMaskedLM",
503
    "Wav2Vec2Tokenizer",
504
505
506
507
508
509
510
511
512
513
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
514
515
    "TFTrainer",
    "TFTrainingArguments",
516
517
518
519
520
521
522
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
523
    "CharacterTokenizer",  # Internal, should never have been in the main init.
524
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
525
    "DummyObject",  # Just picked by mistake sometimes.
526
    "MecabTokenizer",  # Internal, should never have been in the main init.
527
528
529
530
531
532
533
534
535
536
537
538
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
539
    "requires_backends",  # Internal function
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
591
    """Check all models are properly documented."""
592
    documented_objs = find_all_documented_objects()
593
594
595
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
596
597
598
599
600
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
601
    check_docstrings_are_in_md()
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
        with open(file, "r") as f:
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
670
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
671
672
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
673
674


675
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
676
    """Check all models are properly tested and documented."""
677
678
    print("Checking all models are included.")
    check_model_list()
679
680
    print("Checking all models are public.")
    check_models_are_in_init()
681
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
682
    check_all_decorator_order()
683
    check_all_models_are_tested()
684
    print("Checking all objects are properly documented.")
685
    check_all_objects_are_documented()
686
687
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
688
689
690
691


if __name__ == "__main__":
    check_repo_quality()