check_repo.py 26.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from pathlib import Path
22

23
24
from transformers import is_flax_available, is_tf_available, is_torch_available
from transformers.file_utils import ENV_VARS_TRUE_VALUES
25
26
from transformers.models.auto import get_values

27
28
29
30
31

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
32
PATH_TO_DOC = "docs/source"
33

34
35
36
37
38
39
40
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
    "T5Stack",
    "TFDPRSpanPredictor",
]

41
42
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
43
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
44
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
45
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
46
47
48
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
49
50
51
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
52
53
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
54
55
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
56
57
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
58
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
59
    "BartEncoder",  # Building part of bigger (tested) model.
60
    "BertLMHeadModel",  # Needs to be setup as decoder.
61
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
62
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
63
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
64
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
65
    "MBartEncoder",  # Building part of bigger (tested) model.
66
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
67
68
69
70
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
71
    "PegasusEncoder",  # Building part of bigger (tested) model.
72
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
73
    "DPREncoder",  # Building part of bigger (tested) model.
74
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
75
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
76
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
77
    "TFDPREncoder",  # Building part of bigger (tested) model.
78
79
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
80
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
81
    "SeparableConv1D",  # Building part of bigger (tested) model.
82
83
84
85
86
87
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
    "test_modeling_camembert.py",
88
    "test_modeling_flax_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
89
    "test_modeling_mbart.py",
Patrick von Platen's avatar
Patrick von Platen committed
90
    "test_modeling_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
91
    "test_modeling_pegasus.py",
92
    "test_modeling_tf_camembert.py",
Sylvain Gugger's avatar
Sylvain Gugger committed
93
    "test_modeling_tf_mt5.py",
94
    "test_modeling_tf_xlm_roberta.py",
Weizhen's avatar
Weizhen committed
95
    "test_modeling_xlm_prophetnet.py",
96
    "test_modeling_xlm_roberta.py",
Suraj Patil's avatar
Suraj Patil committed
97
98
    "test_modeling_vision_text_dual_encoder.py",
    "test_modeling_flax_vision_text_dual_encoder.py",
99
100
]

101
102
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
103
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
104
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
105
106
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
107
108
    "SegformerDecodeHead",
    "SegformerForSemanticSegmentation",
109
    "BeitForSemanticSegmentation",
Kamal Raj's avatar
Kamal Raj committed
110
    "FlaxBeitForMaskedImageModeling",
NielsRogge's avatar
NielsRogge committed
111
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
112
113
    "CLIPTextModel",
    "CLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
114
115
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
116
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
117
    "DetrForSegmentation",
118
119
120
    "DPRReader",
    "FlaubertForQuestionAnswering",
    "GPT2DoubleHeadsModel",
Ryokan RI's avatar
Ryokan RI committed
121
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
122
123
124
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
125
126
127
128
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
129
    "TFDPRReader",
130
131
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
132
133
134
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
135
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
136
    "HubertForCTC",
137
138
    "SEWForCTC",
    "SEWDForCTC",
139
140
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
141
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
142
143
144
145
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
146
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
147
    "TFHubertForCTC",
148
149
]

150
151
152
153
154
155
156
157
158
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


179
180
181
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
182
    """Get the model modules inside the transformers library."""
183
184
185
186
187
188
189
190
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
191
        "modeling_flax_auto",
192
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
193
        "modeling_flax_utils",
194
        "modeling_speech_encoder_decoder",
195
        "modeling_flax_vision_encoder_decoder",
196
197
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
198
        "modeling_tf_encoder_decoder",
199
200
201
202
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
203
        "modeling_vision_encoder_decoder",
204
205
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
209
210
211
212
213
214
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
215
216
217
    return modules


218
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
219
    """Get the objects in module that are models."""
220
    models = []
221
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
222
    for attr_name in dir(module):
223
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
224
225
226
227
228
229
230
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


261
262
263
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Patrick von Platen's avatar
Patrick von Platen committed
264
    """Get the model test files."""
265
266
267
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
268
        "test_modeling_flax_encoder_decoder",
269
270
        "test_modeling_marian",
        "test_modeling_tf_common",
271
        "test_modeling_tf_encoder_decoder",
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    ]
    test_files = []
    for filename in os.listdir(PATH_TO_TESTS):
        if (
            os.path.isfile(f"{PATH_TO_TESTS}/{filename}")
            and filename.startswith("test_modeling")
            and not os.path.splitext(filename)[0] in _ignore_files
        ):
            test_files.append(filename)
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
287
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
288
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
289
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
290
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
291
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
292
293
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
294
    if len(all_models) > 0:
295
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
296
297
298
299
300
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
301
302
303
304
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
305
    """Check models defined in module are tested in test_file."""
306
    # XxxPreTrainedModel are not tested
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
330
    """Check all models are properly tested."""
331
332
333
334
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
335
        test_file = f"test_{module.__name__.split('.')[-1]}.py"
336
337
338
339
340
341
342
343
344
        if test_file not in test_files:
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


345
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
346
    """Return the list of all models in at least one auto class."""
347
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
348
349
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
350
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
351
352
353
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
354
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
355
356
357
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
358
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
359
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
360
    return [cls for cls in result]
361
362


363
364
365
366
367
368
369
370
371
372
373
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


374
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
375
    """Check models defined in module are each in an auto class."""
376
377
378
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
379
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
380
381
382
383
384
385
386
387
388
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
389
    """Check all models are each in an auto class."""
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
411
412
413
414
415
416
417
418
419
420
421
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
422
423
424
425
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
426
    """Check that in the test file `filename` the slow decorator is always last."""
427
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
444
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
445
446
447
448
449
450
451
452
453
454
455
456
457
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


458
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
459
    """Parse the content of all doc files to detect which classes and functions it documents"""
460
461
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
462
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
463
464
465
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
466
467
468
469
470
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
471
472
473
474
475
476
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
477
    "BartPretrainedModel",
478
479
    "DataCollator",
    "DataCollatorForSOP",
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
495
    "TFBartPretrainedModel",
496
497
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
498
    "Wav2Vec2ForMaskedLM",
499
    "Wav2Vec2Tokenizer",
500
501
502
503
504
505
506
507
508
509
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
510
511
    "TFTrainer",
    "TFTrainingArguments",
512
513
514
515
516
517
518
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
519
    "CharacterTokenizer",  # Internal, should never have been in the main init.
520
    "DPRPretrainedReader",  # Like an Encoder.
521
    "MecabTokenizer",  # Internal, should never have been in the main init.
522
523
524
525
526
527
528
529
530
531
532
533
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
534
    "requires_backends",  # Internal function
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
586
    """Check all models are properly documented."""
587
    documented_objs = find_all_documented_objects()
588
589
590
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
591
592
593
594
595
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    check_docstrings_are_in_md()


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
        with open(file, "r") as f:
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
            + "To fix this run `doc_builder convert path_to_py_file` after installing `doc_builder`\n"
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
641
642


643
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
644
    """Check all models are properly tested and documented."""
645
646
    print("Checking all models are included.")
    check_model_list()
647
648
    print("Checking all models are public.")
    check_models_are_in_init()
649
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
650
    check_all_decorator_order()
651
    check_all_models_are_tested()
652
    print("Checking all objects are properly documented.")
653
    check_all_objects_are_documented()
654
655
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
656
657
658
659


if __name__ == "__main__":
    check_repo_quality()