run_classifier.py 40.6 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
19

thomwolf's avatar
thomwolf committed
20
import argparse
21
import csv
22
import logging
thomwolf's avatar
thomwolf committed
23
import os
VictorSanh's avatar
VictorSanh committed
24
import random
thomwolf's avatar
thomwolf committed
25
import sys
thomwolf's avatar
thomwolf committed
26
27

import numpy as np
VictorSanh's avatar
VictorSanh committed
28
import torch
thomwolf's avatar
thomwolf committed
29
30
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
31
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
33

34
35
36
37
from torch.nn import CrossEntropyLoss, MSELoss
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef, f1_score

38
39
40
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForSequenceClassification, BertConfig
from pytorch_pretrained_bert.tokenization import BertTokenizer
41
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
42
43

logger = logging.getLogger(__name__)
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
thomwolf's avatar
thomwolf committed
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
95
        with open(input_file, "r") as f:
96
97
98
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
thomwolf's avatar
thomwolf committed
99
100
                if sys.version_info[0] == 2:
                    line = list(unicode(cell, 'utf-8') for cell in line)
101
102
                lines.append(line)
            return lines
thomwolf's avatar
thomwolf committed
103
104


VictorSanh's avatar
wip  
VictorSanh committed
105
106
107
108
109
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
thomwolf's avatar
thomwolf committed
110
        logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
VictorSanh's avatar
wip  
VictorSanh committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
130
131
132
            text_a = line[3]
            text_b = line[4]
            label = line[0]
VictorSanh's avatar
wip  
VictorSanh committed
133
134
135
136
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
162
            guid = "%s-%s" % (set_type, line[0])
163
164
            text_a = line[8]
            text_b = line[9]
165
            label = line[-1]
166
167
168
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
thomwolf's avatar
thomwolf committed
169

170

171
172
173
174
175
176
177
178
179
180
class MnliMismatchedProcessor(MnliProcessor):
    """Processor for the MultiNLI Mismatched data set (GLUE version)."""

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
            "dev_matched")


181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
203
204
            text_a = line[3]
            label = line[1]
205
206
207
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
thomwolf's avatar
thomwolf committed
208
209


210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class Sst2Processor(DataProcessor):
    """Processor for the SST-2 data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            text_a = line[0]
            label = line[1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples


241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
class StsbProcessor(DataProcessor):
    """Processor for the STS-B data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return [None]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[7]
            text_b = line[8]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class QqpProcessor(DataProcessor):
    """Processor for the STS-B data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            try:
                text_a = line[3]
                text_b = line[4]
                label = line[5]
            except IndexError:
                continue
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class QnliProcessor(DataProcessor):
    """Processor for the STS-B data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), 
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["entailment", "not_entailment"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class RteProcessor(DataProcessor):
    """Processor for the RTE data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["entailment", "not_entailment"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class WnliProcessor(DataProcessor):
    """Processor for the WNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


405
406
def convert_examples_to_features(examples, label_list, max_seq_length,
                                 tokenizer, output_mode):
407
408
    """Loads a data file into a list of `InputBatch`s."""

409
    label_map = {label : i for i, label in enumerate(label_list)}
410
411
412

    features = []
    for (ex_index, example) in enumerate(examples):
413
414
415
        if ex_index % 10000 == 0:
            logger.info("Writing example %d of %d" % (ex_index, len(examples)))

416
417
418
419
420
421
422
423
424
425
426
427
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
428
                tokens_a = tokens_a[:(max_seq_length - 2)]
429
430
431
432
433
434
435
436
437
438
439
440
441

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
Weixin Wang's avatar
Weixin Wang committed
442
        # since the [SEP] token unambiguously separates the sequences, but it makes
443
444
445
446
447
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
448
449
        tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
        segment_ids = [0] * len(tokens)
450
451

        if tokens_b:
452
453
            tokens += tokens_b + ["[SEP]"]
            segment_ids += [1] * (len(tokens_b) + 1)
454
455
456
457
458
459
460
461

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
462
463
464
465
        padding = [0] * (max_seq_length - len(input_ids))
        input_ids += padding
        input_mask += padding
        segment_ids += padding
466
467
468
469
470

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

471
472
473
474
475
476
477
        if output_mode == "classification":
            label_id = label_map[example.label]
        elif output_mode == "regression":
            label_id = float(example.label)
        else:
            raise KeyError(output_mode)

478
479
480
481
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
482
                    [str(x) for x in tokens]))
483
484
485
486
487
488
489
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
thomwolf's avatar
thomwolf committed
490
491
492
493
                InputFeatures(input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids,
                              label_id=label_id))
494
    return features
thomwolf's avatar
thomwolf committed
495
496


497
498
499
500
501
502
503
504
505
506
507
508
509
510
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
511
512
            tokens_b.pop()

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

def simple_accuracy(preds, labels):
    return (preds == labels).mean()


def acc_and_f1(preds, labels):
    acc = simple_accuracy(preds, labels)
    f1 = f1_score(y_true=labels, y_pred=preds)
    return {
        "acc": acc,
        "f1": f1,
        "acc_and_f1": (acc + f1) / 2,
    }


def pearson_and_spearman(preds, labels):
    pearson_corr = pearsonr(preds, labels)[0]
    spearman_corr = spearmanr(preds, labels)[0]
    return {
        "pearson": pearson_corr,
        "spearmanr": spearman_corr,
        "corr": (pearson_corr + spearman_corr) / 2,
    }


def compute_metrics(task_name, preds, labels):
    assert len(preds) == len(labels)
    if task_name == "cola":
        return {"mcc": matthews_corrcoef(labels, preds)}
    elif task_name == "sst-2":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "mrpc":
        return acc_and_f1(preds, labels)
    elif task_name == "sts-b":
        return pearson_and_spearman(preds, labels)
    elif task_name == "qqp":
        return acc_and_f1(preds, labels)
    elif task_name == "mnli":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "mnli-mm":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "qnli":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "rte":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "wnli":
        return {"acc": simple_accuracy(preds, labels)}
    else:
        raise KeyError(task_name)

VictorSanh's avatar
WIP  
VictorSanh committed
563

564
def main():
565
566
567
568
569
570
571
572
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
thomwolf's avatar
thomwolf committed
573
574
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
575
576
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
577
578
579
580
581
582
583
584
585
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
586
                        help="The output directory where the model predictions and checkpoints will be written.")
587
588

    ## Other parameters
589
590
591
592
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
593
594
595
596
597
598
599
600
601
602
603
604
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
605
606
607
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
636
637
    parser.add_argument('--seed',
                        type=int,
VictorSanh's avatar
VictorSanh committed
638
639
                        default=42,
                        help="random seed for initialization")
640
641
642
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
643
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
thomwolf's avatar
thomwolf committed
644
645
646
647
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
648
649
650
651
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
652
653
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
654
655
    args = parser.parse_args()

656
657
658
659
660
661
662
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

VictorSanh's avatar
WIP  
VictorSanh committed
663
664
665
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
666
        "mnli-mm": MnliMismatchedProcessor,
VictorSanh's avatar
WIP  
VictorSanh committed
667
        "mrpc": MrpcProcessor,
668
        "sst-2": Sst2Processor,
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
        "sts-b": StsbProcessor,
        "qqp": QqpProcessor,
        "qnli": QnliProcessor,
        "rte": RteProcessor,
        "wnli": WnliProcessor,
    }

    output_modes = {
        "cola": "classification",
        "mnli": "classification",
        "mrpc": "classification",
        "sst-2": "classification",
        "sts-b": "regression",
        "qqp": "classification",
        "qnli": "classification",
        "rte": "classification",
        "wnli": "classification",
VictorSanh's avatar
WIP  
VictorSanh committed
686
    }
thomwolf's avatar
thomwolf committed
687
688
689
690
691

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
692
        torch.cuda.set_device(args.local_rank)
thomwolf's avatar
thomwolf committed
693
694
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
695
696
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
697
698
699
700
701

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

702
703
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
704

705
706
707
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
708

709
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
710

VictorSanh's avatar
VictorSanh committed
711
712
713
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
714
715
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
thomwolf's avatar
thomwolf committed
716

VictorSanh's avatar
WIP  
VictorSanh committed
717
718
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
719

720
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
thomwolf's avatar
thomwolf committed
721
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
thomwolf's avatar
thomwolf committed
722
723
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
VictorSanh's avatar
WIP  
VictorSanh committed
724
725

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
726

VictorSanh's avatar
WIP  
VictorSanh committed
727
728
729
730
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
731
732
    output_mode = output_modes[task_name]

VictorSanh's avatar
WIP  
VictorSanh committed
733
    label_list = processor.get_labels()
734
    num_labels = len(label_list)
VictorSanh's avatar
WIP  
VictorSanh committed
735

thomwolf's avatar
thomwolf committed
736
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
737

VictorSanh's avatar
WIP  
VictorSanh committed
738
    train_examples = None
739
    num_train_optimization_steps = None
VictorSanh's avatar
WIP  
VictorSanh committed
740
741
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
742
743
744
745
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
thomwolf's avatar
thomwolf committed
746

thomwolf's avatar
thomwolf committed
747
    # Prepare model
748
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank))
749
    model = BertForSequenceClassification.from_pretrained(args.bert_model,
750
              cache_dir=cache_dir,
751
              num_labels=num_labels)
thomwolf's avatar
thomwolf committed
752
753
    if args.fp16:
        model.half()
thomwolf's avatar
thomwolf committed
754
    model.to(device)
thomwolf's avatar
thomwolf committed
755
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
756
757
758
759
760
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

761
        model = DDP(model)
thomwolf's avatar
thomwolf committed
762
    elif n_gpu > 1:
763
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
764

thomwolf's avatar
thomwolf committed
765
    # Prepare optimizer
766
767
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
768
    optimizer_grouped_parameters = [
769
770
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
771
        ]
772
    if args.fp16:
thomwolf's avatar
thomwolf committed
773
774
775
776
777
778
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

779
780
781
782
783
784
785
786
787
788
789
790
791
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
792
                             t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
793

thomwolf's avatar
thomwolf committed
794
    global_step = 0
Jade Abbott's avatar
Jade Abbott committed
795
    nb_tr_steps = 0
796
    tr_loss = 0
VictorSanh's avatar
WIP  
VictorSanh committed
797
798
    if args.do_train:
        train_features = convert_examples_to_features(
799
            train_examples, label_list, args.max_seq_length, tokenizer, output_mode)
VictorSanh's avatar
WIP  
VictorSanh committed
800
801
802
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
803
        logger.info("  Num steps = %d", num_train_optimization_steps)
804
805
806
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
807
808
809
810
811
812

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)

813
814
815
816
817
818
819
820
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
821
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
822
823
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
824
825
826
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
827
828
829
830
831
832
833
834
835
836
837

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

thomwolf's avatar
thomwolf committed
838
839
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
840
841
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
842
843
844
845
846
847

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

848
                tr_loss += loss.item()
849
                nb_tr_examples += input_ids.size(0)
850
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
851
                if (step + 1) % args.gradient_accumulation_steps == 0:
852
853
854
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
855
                        lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
856
857
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
858
859
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
860
                    global_step += 1
thomwolf's avatar
thomwolf committed
861

862
        # Save a trained model, configuration and tokenizer
863
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
864
865

        # If we save using the predefined names, we can load using `from_pretrained`
866
867
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
868
869
870

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
871
        tokenizer.save_vocabulary(args.output_dir)
872

873
874
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
875
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
876
877
    else:
        model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
878
    model.to(device)
879

880
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
VictorSanh's avatar
WIP  
VictorSanh committed
881
882
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
883
            eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
VictorSanh's avatar
wip  
VictorSanh committed
884
885
886
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
887
888
889
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
890
891
892
893
894
895

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)

896
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
897
898
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
899
900
901
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
902
903
904
        eval_loss = 0
        nb_eval_steps = 0
        preds = []
905

906
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
907
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
908
            input_mask = input_mask.to(device)
909
            segment_ids = segment_ids.to(device)
910
            label_ids = label_ids.to(device)
911

912
            with torch.no_grad():
913
                logits = model(input_ids, segment_ids, input_mask, labels=None)
914

915
916
917
918
919
920
921
922
            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))
            
923
924
            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
925
926
927
928
929
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
            else:
                preds[0] = np.append(
                    preds[0], logits.detach().cpu().numpy(), axis=0)
VictorSanh's avatar
WIP  
VictorSanh committed
930

931
        eval_loss = eval_loss / nb_eval_steps
932
933
934
        preds = preds[0]
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
935
936
        elif output_mode == "regression":
            preds = np.squeeze(preds)
937
        result = compute_metrics(task_name, preds, all_label_ids.numpy())
938
        loss = tr_loss/nb_tr_steps if args.do_train else None
939
940
941
942

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss
VictorSanh's avatar
WIP  
VictorSanh committed
943
944

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
945
946
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
947
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
948
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
949
                writer.write("%s = %s\n" % (key, str(result[key])))
950

951
952
953
954
955
        # hack for MNLI-MM
        if task_name == "mnli":
            task_name = "mnli-mm"
            processor = processors[task_name]()

956
957
958
959
960
            if os.path.exists(args.output_dir + '-MM') and os.listdir(args.output_dir + '-MM') and args.do_train:
                raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
            if not os.path.exists(args.output_dir + '-MM'):
                os.makedirs(args.output_dir + '-MM')

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
            logger.info("***** Running evaluation *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
            all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)

            eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

            model.eval()
            eval_loss = 0
            nb_eval_steps = 0
            preds = []

            for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    logits = model(input_ids, segment_ids, input_mask, labels=None)
            
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
            
                eval_loss += tmp_eval_loss.mean().item()
                nb_eval_steps += 1
                if len(preds) == 0:
                    preds.append(logits.detach().cpu().numpy())
                else:
                    preds[0] = np.append(
                        preds[0], logits.detach().cpu().numpy(), axis=0)
1001

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
            eval_loss = eval_loss / nb_eval_steps
            preds = preds[0]
            preds = np.argmax(preds, axis=1)
            result = compute_metrics(task_name, preds, all_label_ids.numpy())
            loss = tr_loss/nb_tr_steps if args.do_train else None

            result['eval_loss'] = eval_loss
            result['global_step'] = global_step
            result['loss'] = loss

            output_eval_file = os.path.join(args.output_dir + '-MM', "eval_results.txt")
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
1018

VictorSanh's avatar
WIP  
VictorSanh committed
1019
1020
if __name__ == "__main__":
    main()