pipeline_alt_diffusion.py 50.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
16
from typing import Any, Callable, Dict, List, Optional, Union
Patrick von Platen's avatar
Patrick von Platen committed
17
18

import torch
19
from packaging import version
20
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMRobertaTokenizer
Patrick von Platen's avatar
Patrick von Platen committed
21
22

from ...configuration_utils import FrozenDict
23
24
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
25
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
26
from ...models.lora import adjust_lora_scale_text_encoder
Kashif Rasul's avatar
Kashif Rasul committed
27
from ...schedulers import KarrasDiffusionSchedulers
28
29
30
31
32
33
34
35
from ...utils import (
    USE_PEFT_BACKEND,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
Dhruv Nair's avatar
Dhruv Nair committed
36
from ...utils.torch_utils import randn_tensor
37
from ..pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
38
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
39
40
from .modeling_roberta_series import RobertaSeriesModelWithTransformation
from .pipeline_output import AltDiffusionPipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
41
42
43
44


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import AltDiffusionPipeline

        >>> pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")

        >>> # "dark elf princess, highly detailed, d & d, fantasy, highly detailed, digital painting, trending on artstation, concept art, sharp focus, illustration, art by artgerm and greg rutkowski and fuji choko and viktoria gavrilenko and hoang lap"
        >>> prompt = "黑暗精灵公主,非常详细,幻想,非常详细,数字绘画,概念艺术,敏锐的焦点,插图"
        >>> image = pipe(prompt).images[0]
        ```
"""

Patrick von Platen's avatar
Patrick von Platen committed
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used,
            `timesteps` must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
                must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


Patrick von Platen's avatar
Patrick von Platen committed
121
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline with Stable->Alt, CLIPTextModel->RobertaSeriesModelWithTransformation, CLIPTokenizer->XLMRobertaTokenizer, AltDiffusionSafetyChecker->StableDiffusionSafetyChecker
122
123
124
class AltDiffusionPipeline(
    DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
):
Patrick von Platen's avatar
Patrick von Platen committed
125
126
127
    r"""
    Pipeline for text-to-image generation using Alt Diffusion.

128
129
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Patrick von Platen's avatar
Patrick von Platen committed
130

131
132
133
134
135
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
136
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
1lint's avatar
1lint committed
137

Patrick von Platen's avatar
Patrick von Platen committed
138
139
    Args:
        vae ([`AutoencoderKL`]):
140
141
142
143
144
145
146
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.RobertaSeriesModelWithTransformation`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.XLMRobertaTokenizer`]):
            A `XLMRobertaTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
Patrick von Platen's avatar
Patrick von Platen committed
147
148
149
150
151
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
152
153
154
155
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
Patrick von Platen's avatar
Patrick von Platen committed
156
    """
Patrick von Platen's avatar
Patrick von Platen committed
157

158
    model_cpu_offload_seq = "text_encoder->unet->vae"
159
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
160
    _exclude_from_cpu_offload = ["safety_checker"]
161
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
Patrick von Platen's avatar
Patrick von Platen committed
162
163
164
165
166
167
168

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: RobertaSeriesModelWithTransformation,
        tokenizer: XLMRobertaTokenizer,
        unet: UNet2DConditionModel,
Kashif Rasul's avatar
Kashif Rasul committed
169
        scheduler: KarrasDiffusionSchedulers,
Patrick von Platen's avatar
Patrick von Platen committed
170
        safety_checker: StableDiffusionSafetyChecker,
171
        feature_extractor: CLIPImageProcessor,
172
        image_encoder: CLIPVisionModelWithProjection = None,
173
        requires_safety_checker: bool = True,
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    ):
        super().__init__()

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

204
        if safety_checker is None and requires_safety_checker:
205
            logger.warning(
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
209
210
211
212
213
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Alt Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

214
215
216
217
218
219
        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

220
221
222
223
224
225
226
        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
Pedro Cuenca's avatar
Pedro Cuenca committed
227
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
228
229
230
231
232
233
234
235
236
237
238
239
240
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

Patrick von Platen's avatar
Patrick von Platen committed
241
242
243
244
245
246
247
248
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
249
            image_encoder=image_encoder,
Patrick von Platen's avatar
Patrick von Platen committed
250
        )
Patrick von Platen's avatar
Patrick von Platen committed
251
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
252
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
253
        self.register_to_config(requires_safety_checker=requires_safety_checker)
Patrick von Platen's avatar
Patrick von Platen committed
254

255
256
    def enable_vae_slicing(self):
        r"""
257
258
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
259
260
261
262
263
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
264
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
265
266
267
268
        computing decoding in one step.
        """
        self.vae.disable_slicing()

269
270
    def enable_vae_tiling(self):
        r"""
271
272
273
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
274
275
276
277
278
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
279
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
280
281
282
283
        computing decoding in one step.
        """
        self.vae.disable_tiling()

284
285
286
287
288
289
290
291
292
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
293
        lora_scale: Optional[float] = None,
294
        **kwargs,
295
    ):
296
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
297
298
299
300
301
302
303
304
305
306
307
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
308
            **kwargs,
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
326
        clip_skip: Optional[int] = None,
327
    ):
Patrick von Platen's avatar
Patrick von Platen committed
328
329
330
331
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
332
            prompt (`str` or `List[str]`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
333
334
335
336
337
338
339
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
340
            negative_prompt (`str` or `List[str]`, *optional*):
341
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
342
343
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
344
345
346
347
348
349
350
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
351
            lora_scale (`float`, *optional*):
352
353
354
355
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
Patrick von Platen's avatar
Patrick von Platen committed
356
        """
357
358
359
360
361
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

362
            # dynamically adjust the LoRA scale
363
            if not USE_PEFT_BACKEND:
364
365
366
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)
367

368
369
370
371
372
373
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
Patrick von Platen's avatar
Patrick von Platen committed
374

375
        if prompt_embeds is None:
376
377
378
379
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

380
381
382
383
384
385
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
Patrick von Platen's avatar
Patrick von Platen committed
386
            )
387
388
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
Patrick von Platen's avatar
Patrick von Platen committed
389

390
391
392
393
394
395
396
397
398
399
            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
Patrick von Platen's avatar
Patrick von Platen committed
400

401
402
403
404
            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None
Patrick von Platen's avatar
Patrick von Platen committed
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
422

423
424
425
426
427
428
429
430
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
431
432

        bs_embed, seq_len, _ = prompt_embeds.shape
Patrick von Platen's avatar
Patrick von Platen committed
433
        # duplicate text embeddings for each generation per prompt, using mps friendly method
434
435
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
Patrick von Platen's avatar
Patrick von Platen committed
436
437

        # get unconditional embeddings for classifier free guidance
438
        if do_classifier_free_guidance and negative_prompt_embeds is None:
Patrick von Platen's avatar
Patrick von Platen committed
439
440
441
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
442
            elif prompt is not None and type(prompt) is not type(negative_prompt):
Patrick von Platen's avatar
Patrick von Platen committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

458
459
460
461
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

462
            max_length = prompt_embeds.shape[1]
Patrick von Platen's avatar
Patrick von Platen committed
463
464
465
466
467
468
469
470
471
472
473
474
475
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

476
            negative_prompt_embeds = self.text_encoder(
Patrick von Platen's avatar
Patrick von Platen committed
477
478
479
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
480
            negative_prompt_embeds = negative_prompt_embeds[0]
Patrick von Platen's avatar
Patrick von Platen committed
481

482
        if do_classifier_free_guidance:
Patrick von Platen's avatar
Patrick von Platen committed
483
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
484
485
            seq_len = negative_prompt_embeds.shape[1]

486
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
487
488
489

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
Patrick von Platen's avatar
Patrick von Platen committed
490

491
        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
492
            # Retrieve the original scale by scaling back the LoRA layers
493
            unscale_lora_layers(self.text_encoder, lora_scale)
494

495
        return prompt_embeds, negative_prompt_embeds
Patrick von Platen's avatar
Patrick von Platen committed
496

497
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
498
499
500
501
502
503
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)
518

519
            return image_embeds, uncond_image_embeds
520

Patrick von Platen's avatar
Patrick von Platen committed
521
    def run_safety_checker(self, image, device, dtype):
522
523
524
525
526
527
528
529
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
Patrick von Platen's avatar
Patrick von Platen committed
530
531
532
533
534
535
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    def decode_latents(self, latents):
536
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
537
538
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

539
        latents = 1 / self.vae.config.scaling_factor * latents
540
        image = self.vae.decode(latents, return_dict=False)[0]
Patrick von Platen's avatar
Patrick von Platen committed
541
        image = (image / 2 + 0.5).clamp(0, 1)
542
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
Patrick von Platen's avatar
Patrick von Platen committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

563
564
565
566
567
568
569
570
571
    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
572
        callback_on_step_end_tensor_inputs=None,
573
    ):
Patrick von Platen's avatar
Patrick von Platen committed
574
575
576
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

577
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
Patrick von Platen's avatar
Patrick von Platen committed
578
579
580
581
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
582
583
584
585
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
586
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
587
            )
Patrick von Platen's avatar
Patrick von Platen committed
588

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

Patrick von Platen's avatar
Patrick von Platen committed
615
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
Patrick von Platen's avatar
Patrick von Platen committed
616
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
617
618
619
620
621
622
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

Patrick von Platen's avatar
Patrick von Platen committed
623
        if latents is None:
624
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
Patrick von Platen's avatar
Patrick von Platen committed
625
626
627
628
629
630
631
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Alt Diffusion v1, v2, and Alt Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

Patrick von Platen's avatar
Patrick von Platen committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            timesteps (`torch.Tensor`):
                generate embedding vectors at these timesteps
            embedding_dim (`int`, *optional*, defaults to 512):
                dimension of the embeddings to generate
            dtype:
                data type of the generated embeddings

        Returns:
            `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
Patrick von Platen's avatar
Patrick von Platen committed
703
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
704
705
706
707
708
709
710
711
712

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

Patrick von Platen's avatar
Patrick von Platen committed
713
    @torch.no_grad()
714
    @replace_example_docstring(EXAMPLE_DOC_STRING)
Patrick von Platen's avatar
Patrick von Platen committed
715
716
    def __call__(
        self,
717
        prompt: Union[str, List[str]] = None,
718
719
        height: Optional[int] = None,
        width: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
720
        num_inference_steps: int = 50,
721
        timesteps: List[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
722
723
724
725
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
726
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Patrick von Platen's avatar
Patrick von Platen committed
727
        latents: Optional[torch.FloatTensor] = None,
728
729
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
730
        ip_adapter_image: Optional[PipelineImageInput] = None,
Patrick von Platen's avatar
Patrick von Platen committed
731
732
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
733
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
734
        guidance_rescale: float = 0.0,
735
        clip_skip: Optional[int] = None,
736
737
738
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
739
740
    ):
        r"""
741
        The call function to the pipeline for generation.
Patrick von Platen's avatar
Patrick von Platen committed
742
743

        Args:
744
            prompt (`str` or `List[str]`, *optional*):
745
746
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
Patrick von Platen's avatar
Patrick von Platen committed
747
                The height in pixels of the generated image.
748
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
Patrick von Platen's avatar
Patrick von Platen committed
749
750
751
752
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
753
754
755
756
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
Patrick von Platen's avatar
Patrick von Platen committed
757
            guidance_scale (`float`, *optional*, defaults to 7.5):
758
759
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
Patrick von Platen's avatar
Patrick von Platen committed
760
            negative_prompt (`str` or `List[str]`, *optional*):
761
762
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
Patrick von Platen's avatar
Patrick von Platen committed
763
764
765
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
766
767
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
768
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
769
770
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
Patrick von Platen's avatar
Patrick von Platen committed
771
            latents (`torch.FloatTensor`, *optional*):
772
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
Patrick von Platen's avatar
Patrick von Platen committed
773
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
774
                tensor is generated by sampling using the supplied random `generator`.
775
            prompt_embeds (`torch.FloatTensor`, *optional*):
776
777
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
778
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
779
780
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
781
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
Patrick von Platen's avatar
Patrick von Platen committed
782
            output_type (`str`, *optional*, defaults to `"pil"`):
783
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
Patrick von Platen's avatar
Patrick von Platen committed
784
785
786
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] instead of a
                plain tuple.
787
            cross_attention_kwargs (`dict`, *optional*):
788
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
Patrick von Platen's avatar
Patrick von Platen committed
789
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
790
            guidance_rescale (`float`, *optional*, defaults to 0.0):
791
792
793
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
794
795
796
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
797
798
799
800
801
802
803
804
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
Steven Liu's avatar
Steven Liu committed
805
                `._callback_tensor_inputs` attribute of your pipeline class.
Patrick von Platen's avatar
Patrick von Platen committed
806

807
808
        Examples:

Patrick von Platen's avatar
Patrick von Platen committed
809
810
        Returns:
            [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] or `tuple`:
811
812
813
814
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
Patrick von Platen's avatar
Patrick von Platen committed
815
        """
816
817
818
819
820
821
822
823

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
824
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
825
826
827
828
829
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
830
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
831
832
            )

833
        # 0. Default height and width to unet
Patrick von Platen's avatar
Patrick von Platen committed
834
835
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
836
        # to deal with lora scaling and other possible forward hooks
Patrick von Platen's avatar
Patrick von Platen committed
837
838

        # 1. Check inputs. Raise error if not correct
839
        self.check_inputs(
840
841
842
843
844
845
846
847
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
848
        )
Patrick von Platen's avatar
Patrick von Platen committed
849

850
851
852
853
854
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

Patrick von Platen's avatar
Patrick von Platen committed
855
        # 2. Define call parameters
856
857
858
859
860
861
862
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

Patrick von Platen's avatar
Patrick von Platen committed
863
864
865
        device = self._execution_device

        # 3. Encode input prompt
866
867
868
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
869

870
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
871
872
873
            prompt,
            device,
            num_images_per_prompt,
874
            self.do_classifier_free_guidance,
875
876
877
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
878
            lora_scale=lora_scale,
879
            clip_skip=self.clip_skip,
Patrick von Platen's avatar
Patrick von Platen committed
880
        )
881

882
883
884
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
885
        if self.do_classifier_free_guidance:
886
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
Patrick von Platen's avatar
Patrick von Platen committed
887

888
        if ip_adapter_image is not None:
889
890
891
892
            output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
            image_embeds, negative_image_embeds = self.encode_image(
                ip_adapter_image, device, num_images_per_prompt, output_hidden_state
            )
893
894
895
            if self.do_classifier_free_guidance:
                image_embeds = torch.cat([negative_image_embeds, image_embeds])

Patrick von Platen's avatar
Patrick von Platen committed
896
        # 4. Prepare timesteps
897
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
898
899

        # 5. Prepare latent variables
900
        num_channels_latents = self.unet.config.in_channels
Patrick von Platen's avatar
Patrick von Platen committed
901
902
903
904
905
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
906
            prompt_embeds.dtype,
Patrick von Platen's avatar
Patrick von Platen committed
907
908
909
910
911
912
913
914
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

915
916
917
918
        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None

        # 6.2 Optionally get Guidance Scale Embedding
Patrick von Platen's avatar
Patrick von Platen committed
919
920
921
922
923
924
925
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

Patrick von Platen's avatar
Patrick von Platen committed
926
        # 7. Denoising loop
927
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
928
        self._num_timesteps = len(timesteps)
929
930
931
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
932
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
933
934
935
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
936
937
938
939
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
Patrick von Platen's avatar
Patrick von Platen committed
940
                    timestep_cond=timestep_cond,
941
                    cross_attention_kwargs=self.cross_attention_kwargs,
942
                    added_cond_kwargs=added_cond_kwargs,
943
944
                    return_dict=False,
                )[0]
945
946

                # perform guidance
947
                if self.do_classifier_free_guidance:
948
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
949
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
950

951
                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
952
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
953
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
954

955
                # compute the previous noisy sample x_t -> x_t-1
956
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
957

958
959
960
961
962
963
964
965
966
967
                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

968
                # call the callback, if provided
969
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
970
971
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
972
973
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
Patrick von Platen's avatar
Patrick von Platen committed
974

975
        if not output_type == "latent":
Will Berman's avatar
Will Berman committed
976
977
978
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
979
980
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
981
982
            image = latents
            has_nsfw_concept = None
Patrick von Platen's avatar
Patrick von Platen committed
983

984
985
        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
986
        else:
987
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
988

989
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
Patrick von Platen's avatar
Patrick von Platen committed
990

991
992
        # Offload all models
        self.maybe_free_model_hooks()
993

Patrick von Platen's avatar
Patrick von Platen committed
994
995
996
997
        if not return_dict:
            return (image, has_nsfw_concept)

        return AltDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)