pipeline_alt_diffusion.py 46.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
16
from typing import Any, Callable, Dict, List, Optional, Union
Patrick von Platen's avatar
Patrick von Platen committed
17
18

import torch
19
from packaging import version
20
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMRobertaTokenizer
Patrick von Platen's avatar
Patrick von Platen committed
21
22

from ...configuration_utils import FrozenDict
23
24
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
Patrick von Platen's avatar
Patrick von Platen committed
25
from ...models import AutoencoderKL, UNet2DConditionModel
26
from ...models.lora import adjust_lora_scale_text_encoder
Kashif Rasul's avatar
Kashif Rasul committed
27
from ...schedulers import KarrasDiffusionSchedulers
28
29
30
31
32
33
34
35
from ...utils import (
    USE_PEFT_BACKEND,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
Dhruv Nair's avatar
Dhruv Nair committed
36
from ...utils.torch_utils import randn_tensor
37
from ..pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
38
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
39
40
from .modeling_roberta_series import RobertaSeriesModelWithTransformation
from .pipeline_output import AltDiffusionPipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
41
42
43
44


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import AltDiffusionPipeline

        >>> pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")

        >>> # "dark elf princess, highly detailed, d & d, fantasy, highly detailed, digital painting, trending on artstation, concept art, sharp focus, illustration, art by artgerm and greg rutkowski and fuji choko and viktoria gavrilenko and hoang lap"
        >>> prompt = "黑暗精灵公主,非常详细,幻想,非常详细,数字绘画,概念艺术,敏锐的焦点,插图"
        >>> image = pipe(prompt).images[0]
        ```
"""

Patrick von Platen's avatar
Patrick von Platen committed
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


Patrick von Platen's avatar
Patrick von Platen committed
76
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline with Stable->Alt, CLIPTextModel->RobertaSeriesModelWithTransformation, CLIPTokenizer->XLMRobertaTokenizer, AltDiffusionSafetyChecker->StableDiffusionSafetyChecker
77
78
79
class AltDiffusionPipeline(
    DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
):
Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
    r"""
    Pipeline for text-to-image generation using Alt Diffusion.

83
84
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Patrick von Platen's avatar
Patrick von Platen committed
85

86
87
88
89
90
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
91
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
1lint's avatar
1lint committed
92

Patrick von Platen's avatar
Patrick von Platen committed
93
94
    Args:
        vae ([`AutoencoderKL`]):
95
96
97
98
99
100
101
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.RobertaSeriesModelWithTransformation`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.XLMRobertaTokenizer`]):
            A `XLMRobertaTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
Patrick von Platen's avatar
Patrick von Platen committed
102
103
104
105
106
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
107
108
109
110
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
Patrick von Platen's avatar
Patrick von Platen committed
111
    """
Patrick von Platen's avatar
Patrick von Platen committed
112

113
    model_cpu_offload_seq = "text_encoder->unet->vae"
114
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
115
    _exclude_from_cpu_offload = ["safety_checker"]
116
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
121
122
123

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: RobertaSeriesModelWithTransformation,
        tokenizer: XLMRobertaTokenizer,
        unet: UNet2DConditionModel,
Kashif Rasul's avatar
Kashif Rasul committed
124
        scheduler: KarrasDiffusionSchedulers,
Patrick von Platen's avatar
Patrick von Platen committed
125
        safety_checker: StableDiffusionSafetyChecker,
126
        feature_extractor: CLIPImageProcessor,
127
        image_encoder: CLIPVisionModelWithProjection = None,
128
        requires_safety_checker: bool = True,
Patrick von Platen's avatar
Patrick von Platen committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    ):
        super().__init__()

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

159
        if safety_checker is None and requires_safety_checker:
160
            logger.warning(
Patrick von Platen's avatar
Patrick von Platen committed
161
162
163
164
165
166
167
168
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Alt Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

169
170
171
172
173
174
        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

175
176
177
178
179
180
181
        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
Pedro Cuenca's avatar
Pedro Cuenca committed
182
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
183
184
185
186
187
188
189
190
191
192
193
194
195
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

Patrick von Platen's avatar
Patrick von Platen committed
196
197
198
199
200
201
202
203
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
204
            image_encoder=image_encoder,
Patrick von Platen's avatar
Patrick von Platen committed
205
        )
Patrick von Platen's avatar
Patrick von Platen committed
206
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
207
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
208
        self.register_to_config(requires_safety_checker=requires_safety_checker)
Patrick von Platen's avatar
Patrick von Platen committed
209

210
211
    def enable_vae_slicing(self):
        r"""
212
213
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
214
215
216
217
218
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
219
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
220
221
222
223
        computing decoding in one step.
        """
        self.vae.disable_slicing()

224
225
    def enable_vae_tiling(self):
        r"""
226
227
228
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
229
230
231
232
233
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
234
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
235
236
237
238
        computing decoding in one step.
        """
        self.vae.disable_tiling()

239
240
241
242
243
244
245
246
247
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
248
        lora_scale: Optional[float] = None,
249
        **kwargs,
250
    ):
251
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
252
253
254
255
256
257
258
259
260
261
262
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
263
            **kwargs,
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
281
        clip_skip: Optional[int] = None,
282
    ):
Patrick von Platen's avatar
Patrick von Platen committed
283
284
285
286
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
287
            prompt (`str` or `List[str]`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
288
289
290
291
292
293
294
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
295
            negative_prompt (`str` or `List[str]`, *optional*):
296
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
297
298
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
299
300
301
302
303
304
305
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
306
            lora_scale (`float`, *optional*):
307
308
309
310
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
Patrick von Platen's avatar
Patrick von Platen committed
311
        """
312
313
314
315
316
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

317
            # dynamically adjust the LoRA scale
318
            if not USE_PEFT_BACKEND:
319
320
321
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)
322

323
324
325
326
327
328
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
Patrick von Platen's avatar
Patrick von Platen committed
329

330
        if prompt_embeds is None:
331
332
333
334
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

335
336
337
338
339
340
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
Patrick von Platen's avatar
Patrick von Platen committed
341
            )
342
343
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
Patrick von Platen's avatar
Patrick von Platen committed
344

345
346
347
348
349
350
351
352
353
354
            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
Patrick von Platen's avatar
Patrick von Platen committed
355

356
357
358
359
            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None
Patrick von Platen's avatar
Patrick von Platen committed
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
377

378
379
380
381
382
383
384
385
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
386
387

        bs_embed, seq_len, _ = prompt_embeds.shape
Patrick von Platen's avatar
Patrick von Platen committed
388
        # duplicate text embeddings for each generation per prompt, using mps friendly method
389
390
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
Patrick von Platen's avatar
Patrick von Platen committed
391
392

        # get unconditional embeddings for classifier free guidance
393
        if do_classifier_free_guidance and negative_prompt_embeds is None:
Patrick von Platen's avatar
Patrick von Platen committed
394
395
396
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
397
            elif prompt is not None and type(prompt) is not type(negative_prompt):
Patrick von Platen's avatar
Patrick von Platen committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

413
414
415
416
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

417
            max_length = prompt_embeds.shape[1]
Patrick von Platen's avatar
Patrick von Platen committed
418
419
420
421
422
423
424
425
426
427
428
429
430
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

431
            negative_prompt_embeds = self.text_encoder(
Patrick von Platen's avatar
Patrick von Platen committed
432
433
434
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
435
            negative_prompt_embeds = negative_prompt_embeds[0]
Patrick von Platen's avatar
Patrick von Platen committed
436

437
        if do_classifier_free_guidance:
Patrick von Platen's avatar
Patrick von Platen committed
438
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
439
440
            seq_len = negative_prompt_embeds.shape[1]

441
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
442
443
444

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
Patrick von Platen's avatar
Patrick von Platen committed
445

446
        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
447
            # Retrieve the original scale by scaling back the LoRA layers
448
            unscale_lora_layers(self.text_encoder, lora_scale)
449

450
        return prompt_embeds, negative_prompt_embeds
Patrick von Platen's avatar
Patrick von Platen committed
451

452
453
454
455
456
457
458
459
460
461
462
463
464
    def encode_image(self, image, device, num_images_per_prompt):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        image_embeds = self.image_encoder(image).image_embeds
        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)

        uncond_image_embeds = torch.zeros_like(image_embeds)
        return image_embeds, uncond_image_embeds

Patrick von Platen's avatar
Patrick von Platen committed
465
    def run_safety_checker(self, image, device, dtype):
466
467
468
469
470
471
472
473
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
Patrick von Platen's avatar
Patrick von Platen committed
474
475
476
477
478
479
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    def decode_latents(self, latents):
480
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
481
482
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

483
        latents = 1 / self.vae.config.scaling_factor * latents
484
        image = self.vae.decode(latents, return_dict=False)[0]
Patrick von Platen's avatar
Patrick von Platen committed
485
        image = (image / 2 + 0.5).clamp(0, 1)
486
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
Patrick von Platen's avatar
Patrick von Platen committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

507
508
509
510
511
512
513
514
515
    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
516
        callback_on_step_end_tensor_inputs=None,
517
    ):
Patrick von Platen's avatar
Patrick von Platen committed
518
519
520
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

521
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
Patrick von Platen's avatar
Patrick von Platen committed
522
523
524
525
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
526
527
528
529
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
530
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
531
            )
Patrick von Platen's avatar
Patrick von Platen committed
532

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

Patrick von Platen's avatar
Patrick von Platen committed
559
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
Patrick von Platen's avatar
Patrick von Platen committed
560
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
561
562
563
564
565
566
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

Patrick von Platen's avatar
Patrick von Platen committed
567
        if latents is None:
568
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
Patrick von Platen's avatar
Patrick von Platen committed
569
570
571
572
573
574
575
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Alt Diffusion v1, v2, and Alt Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

Patrick von Platen's avatar
Patrick von Platen committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            timesteps (`torch.Tensor`):
                generate embedding vectors at these timesteps
            embedding_dim (`int`, *optional*, defaults to 512):
                dimension of the embeddings to generate
            dtype:
                data type of the generated embeddings

        Returns:
            `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
Patrick von Platen's avatar
Patrick von Platen committed
647
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
648
649
650
651
652
653
654
655
656

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

Patrick von Platen's avatar
Patrick von Platen committed
657
    @torch.no_grad()
658
    @replace_example_docstring(EXAMPLE_DOC_STRING)
Patrick von Platen's avatar
Patrick von Platen committed
659
660
    def __call__(
        self,
661
        prompt: Union[str, List[str]] = None,
662
663
        height: Optional[int] = None,
        width: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
664
665
666
667
668
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
669
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Patrick von Platen's avatar
Patrick von Platen committed
670
        latents: Optional[torch.FloatTensor] = None,
671
672
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
673
        ip_adapter_image: Optional[PipelineImageInput] = None,
Patrick von Platen's avatar
Patrick von Platen committed
674
675
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
676
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
677
        guidance_rescale: float = 0.0,
678
        clip_skip: Optional[int] = None,
679
680
681
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
682
683
    ):
        r"""
684
        The call function to the pipeline for generation.
Patrick von Platen's avatar
Patrick von Platen committed
685
686

        Args:
687
            prompt (`str` or `List[str]`, *optional*):
688
689
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
Patrick von Platen's avatar
Patrick von Platen committed
690
                The height in pixels of the generated image.
691
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
Patrick von Platen's avatar
Patrick von Platen committed
692
693
694
695
696
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
697
698
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
Patrick von Platen's avatar
Patrick von Platen committed
699
            negative_prompt (`str` or `List[str]`, *optional*):
700
701
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
Patrick von Platen's avatar
Patrick von Platen committed
702
703
704
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
705
706
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
707
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
708
709
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
Patrick von Platen's avatar
Patrick von Platen committed
710
            latents (`torch.FloatTensor`, *optional*):
711
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
Patrick von Platen's avatar
Patrick von Platen committed
712
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
713
                tensor is generated by sampling using the supplied random `generator`.
714
            prompt_embeds (`torch.FloatTensor`, *optional*):
715
716
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
717
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
718
719
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
720
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
Patrick von Platen's avatar
Patrick von Platen committed
721
            output_type (`str`, *optional*, defaults to `"pil"`):
722
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
Patrick von Platen's avatar
Patrick von Platen committed
723
724
725
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] instead of a
                plain tuple.
726
            cross_attention_kwargs (`dict`, *optional*):
727
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
Patrick von Platen's avatar
Patrick von Platen committed
728
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
729
            guidance_rescale (`float`, *optional*, defaults to 0.0):
730
731
732
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
733
734
735
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
736
737
738
739
740
741
742
743
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
Steven Liu's avatar
Steven Liu committed
744
                `._callback_tensor_inputs` attribute of your pipeline class.
Patrick von Platen's avatar
Patrick von Platen committed
745

746
747
        Examples:

Patrick von Platen's avatar
Patrick von Platen committed
748
749
        Returns:
            [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] or `tuple`:
750
751
752
753
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
Patrick von Platen's avatar
Patrick von Platen committed
754
        """
755
756
757
758
759
760
761
762

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
763
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
764
765
766
767
768
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
769
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
770
771
            )

772
        # 0. Default height and width to unet
Patrick von Platen's avatar
Patrick von Platen committed
773
774
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
775
        # to deal with lora scaling and other possible forward hooks
Patrick von Platen's avatar
Patrick von Platen committed
776
777

        # 1. Check inputs. Raise error if not correct
778
        self.check_inputs(
779
780
781
782
783
784
785
786
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
787
        )
Patrick von Platen's avatar
Patrick von Platen committed
788

789
790
791
792
793
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

Patrick von Platen's avatar
Patrick von Platen committed
794
        # 2. Define call parameters
795
796
797
798
799
800
801
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

Patrick von Platen's avatar
Patrick von Platen committed
802
803
804
        device = self._execution_device

        # 3. Encode input prompt
805
806
807
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
808

809
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
810
811
812
            prompt,
            device,
            num_images_per_prompt,
813
            self.do_classifier_free_guidance,
814
815
816
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
817
            lora_scale=lora_scale,
818
            clip_skip=self.clip_skip,
Patrick von Platen's avatar
Patrick von Platen committed
819
        )
820

821
822
823
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
824
        if self.do_classifier_free_guidance:
825
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
Patrick von Platen's avatar
Patrick von Platen committed
826

827
828
829
830
831
        if ip_adapter_image is not None:
            image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
            if self.do_classifier_free_guidance:
                image_embeds = torch.cat([negative_image_embeds, image_embeds])

Patrick von Platen's avatar
Patrick von Platen committed
832
833
834
835
836
        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
837
        num_channels_latents = self.unet.config.in_channels
Patrick von Platen's avatar
Patrick von Platen committed
838
839
840
841
842
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
843
            prompt_embeds.dtype,
Patrick von Platen's avatar
Patrick von Platen committed
844
845
846
847
848
849
850
851
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

852
853
854
855
        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None

        # 6.2 Optionally get Guidance Scale Embedding
Patrick von Platen's avatar
Patrick von Platen committed
856
857
858
859
860
861
862
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

Patrick von Platen's avatar
Patrick von Platen committed
863
        # 7. Denoising loop
864
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
865
        self._num_timesteps = len(timesteps)
866
867
868
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
869
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
870
871
872
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
873
874
875
876
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
Patrick von Platen's avatar
Patrick von Platen committed
877
                    timestep_cond=timestep_cond,
878
                    cross_attention_kwargs=self.cross_attention_kwargs,
879
                    added_cond_kwargs=added_cond_kwargs,
880
881
                    return_dict=False,
                )[0]
882
883

                # perform guidance
884
                if self.do_classifier_free_guidance:
885
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
886
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
887

888
                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
889
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
890
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
891

892
                # compute the previous noisy sample x_t -> x_t-1
893
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
894

895
896
897
898
899
900
901
902
903
904
                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

905
                # call the callback, if provided
906
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
907
908
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
909
910
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
Patrick von Platen's avatar
Patrick von Platen committed
911

912
        if not output_type == "latent":
Will Berman's avatar
Will Berman committed
913
914
915
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
916
917
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
918
919
            image = latents
            has_nsfw_concept = None
Patrick von Platen's avatar
Patrick von Platen committed
920

921
922
        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
923
        else:
924
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
925

926
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
Patrick von Platen's avatar
Patrick von Platen committed
927

928
929
        # Offload all models
        self.maybe_free_model_hooks()
930

Patrick von Platen's avatar
Patrick von Platen committed
931
932
933
934
        if not return_dict:
            return (image, has_nsfw_concept)

        return AltDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)