pipeline_alt_diffusion.py 45.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
16
from typing import Any, Callable, Dict, List, Optional, Union
Patrick von Platen's avatar
Patrick von Platen committed
17
18

import torch
19
from packaging import version
20
from transformers import CLIPImageProcessor, XLMRobertaTokenizer
Patrick von Platen's avatar
Patrick von Platen committed
21
22

from ...configuration_utils import FrozenDict
23
from ...image_processor import VaeImageProcessor
24
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
Patrick von Platen's avatar
Patrick von Platen committed
25
from ...models import AutoencoderKL, UNet2DConditionModel
26
from ...models.lora import adjust_lora_scale_text_encoder
Kashif Rasul's avatar
Kashif Rasul committed
27
from ...schedulers import KarrasDiffusionSchedulers
28
29
30
31
32
33
34
35
from ...utils import (
    USE_PEFT_BACKEND,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
Dhruv Nair's avatar
Dhruv Nair committed
36
from ...utils.torch_utils import randn_tensor
37
from ..pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
38
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
39
40
from .modeling_roberta_series import RobertaSeriesModelWithTransformation
from .pipeline_output import AltDiffusionPipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
41
42
43
44


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import AltDiffusionPipeline

        >>> pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")

        >>> # "dark elf princess, highly detailed, d & d, fantasy, highly detailed, digital painting, trending on artstation, concept art, sharp focus, illustration, art by artgerm and greg rutkowski and fuji choko and viktoria gavrilenko and hoang lap"
        >>> prompt = "黑暗精灵公主,非常详细,幻想,非常详细,数字绘画,概念艺术,敏锐的焦点,插图"
        >>> image = pipe(prompt).images[0]
        ```
"""

Patrick von Platen's avatar
Patrick von Platen committed
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


Patrick von Platen's avatar
Patrick von Platen committed
76
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline with Stable->Alt, CLIPTextModel->RobertaSeriesModelWithTransformation, CLIPTokenizer->XLMRobertaTokenizer, AltDiffusionSafetyChecker->StableDiffusionSafetyChecker
77
class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
Patrick von Platen's avatar
Patrick von Platen committed
78
79
80
    r"""
    Pipeline for text-to-image generation using Alt Diffusion.

81
82
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Patrick von Platen's avatar
Patrick von Platen committed
83

84
85
86
87
88
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
1lint's avatar
1lint committed
89

Patrick von Platen's avatar
Patrick von Platen committed
90
91
    Args:
        vae ([`AutoencoderKL`]):
92
93
94
95
96
97
98
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.RobertaSeriesModelWithTransformation`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.XLMRobertaTokenizer`]):
            A `XLMRobertaTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102
103
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
104
105
106
107
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
Patrick von Platen's avatar
Patrick von Platen committed
108
    """
Patrick von Platen's avatar
Patrick von Platen committed
109

110
    model_cpu_offload_seq = "text_encoder->unet->vae"
111
    _optional_components = ["safety_checker", "feature_extractor"]
112
    _exclude_from_cpu_offload = ["safety_checker"]
113
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
117
118
119
120

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: RobertaSeriesModelWithTransformation,
        tokenizer: XLMRobertaTokenizer,
        unet: UNet2DConditionModel,
Kashif Rasul's avatar
Kashif Rasul committed
121
        scheduler: KarrasDiffusionSchedulers,
Patrick von Platen's avatar
Patrick von Platen committed
122
        safety_checker: StableDiffusionSafetyChecker,
123
        feature_extractor: CLIPImageProcessor,
124
        requires_safety_checker: bool = True,
Patrick von Platen's avatar
Patrick von Platen committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    ):
        super().__init__()

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

155
        if safety_checker is None and requires_safety_checker:
156
            logger.warning(
Patrick von Platen's avatar
Patrick von Platen committed
157
158
159
160
161
162
163
164
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Alt Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

165
166
167
168
169
170
        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

171
172
173
174
175
176
177
        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
Pedro Cuenca's avatar
Pedro Cuenca committed
178
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
179
180
181
182
183
184
185
186
187
188
189
190
191
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

Patrick von Platen's avatar
Patrick von Platen committed
192
193
194
195
196
197
198
199
200
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
Patrick von Platen's avatar
Patrick von Platen committed
201
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
202
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
203
        self.register_to_config(requires_safety_checker=requires_safety_checker)
Patrick von Platen's avatar
Patrick von Platen committed
204

205
206
    def enable_vae_slicing(self):
        r"""
207
208
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
209
210
211
212
213
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
214
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
215
216
217
218
        computing decoding in one step.
        """
        self.vae.disable_slicing()

219
220
    def enable_vae_tiling(self):
        r"""
221
222
223
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
224
225
226
227
228
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
229
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
230
231
232
233
        computing decoding in one step.
        """
        self.vae.disable_tiling()

234
235
236
237
238
239
240
241
242
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
243
        lora_scale: Optional[float] = None,
244
        **kwargs,
245
    ):
246
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
247
248
249
250
251
252
253
254
255
256
257
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
258
            **kwargs,
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
276
        clip_skip: Optional[int] = None,
277
    ):
Patrick von Platen's avatar
Patrick von Platen committed
278
279
280
281
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
282
            prompt (`str` or `List[str]`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
283
284
285
286
287
288
289
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
290
            negative_prompt (`str` or `List[str]`, *optional*):
291
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
292
293
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
294
295
296
297
298
299
300
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
301
            lora_scale (`float`, *optional*):
302
303
304
305
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
Patrick von Platen's avatar
Patrick von Platen committed
306
        """
307
308
309
310
311
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

312
            # dynamically adjust the LoRA scale
313
            if not USE_PEFT_BACKEND:
314
315
316
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)
317

318
319
320
321
322
323
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
Patrick von Platen's avatar
Patrick von Platen committed
324

325
        if prompt_embeds is None:
326
327
328
329
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

330
331
332
333
334
335
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
Patrick von Platen's avatar
Patrick von Platen committed
336
            )
337
338
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
Patrick von Platen's avatar
Patrick von Platen committed
339

340
341
342
343
344
345
346
347
348
349
            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
Patrick von Platen's avatar
Patrick von Platen committed
350

351
352
353
354
            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None
Patrick von Platen's avatar
Patrick von Platen committed
355

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
372

373
374
375
376
377
378
379
380
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
381
382

        bs_embed, seq_len, _ = prompt_embeds.shape
Patrick von Platen's avatar
Patrick von Platen committed
383
        # duplicate text embeddings for each generation per prompt, using mps friendly method
384
385
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
Patrick von Platen's avatar
Patrick von Platen committed
386
387

        # get unconditional embeddings for classifier free guidance
388
        if do_classifier_free_guidance and negative_prompt_embeds is None:
Patrick von Platen's avatar
Patrick von Platen committed
389
390
391
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
392
            elif prompt is not None and type(prompt) is not type(negative_prompt):
Patrick von Platen's avatar
Patrick von Platen committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

408
409
410
411
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

412
            max_length = prompt_embeds.shape[1]
Patrick von Platen's avatar
Patrick von Platen committed
413
414
415
416
417
418
419
420
421
422
423
424
425
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

426
            negative_prompt_embeds = self.text_encoder(
Patrick von Platen's avatar
Patrick von Platen committed
427
428
429
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
430
            negative_prompt_embeds = negative_prompt_embeds[0]
Patrick von Platen's avatar
Patrick von Platen committed
431

432
        if do_classifier_free_guidance:
Patrick von Platen's avatar
Patrick von Platen committed
433
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
434
435
            seq_len = negative_prompt_embeds.shape[1]

436
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
437
438
439

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
Patrick von Platen's avatar
Patrick von Platen committed
440

441
        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
442
            # Retrieve the original scale by scaling back the LoRA layers
443
            unscale_lora_layers(self.text_encoder, lora_scale)
444

445
        return prompt_embeds, negative_prompt_embeds
Patrick von Platen's avatar
Patrick von Platen committed
446
447

    def run_safety_checker(self, image, device, dtype):
448
449
450
451
452
453
454
455
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
Patrick von Platen's avatar
Patrick von Platen committed
456
457
458
459
460
461
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    def decode_latents(self, latents):
462
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
463
464
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

465
        latents = 1 / self.vae.config.scaling_factor * latents
466
        image = self.vae.decode(latents, return_dict=False)[0]
Patrick von Platen's avatar
Patrick von Platen committed
467
        image = (image / 2 + 0.5).clamp(0, 1)
468
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
Patrick von Platen's avatar
Patrick von Platen committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

489
490
491
492
493
494
495
496
497
    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
498
        callback_on_step_end_tensor_inputs=None,
499
    ):
Patrick von Platen's avatar
Patrick von Platen committed
500
501
502
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

503
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
Patrick von Platen's avatar
Patrick von Platen committed
504
505
506
507
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
508
509
510
511
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
512
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
513
            )
Patrick von Platen's avatar
Patrick von Platen committed
514

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

Patrick von Platen's avatar
Patrick von Platen committed
541
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
Patrick von Platen's avatar
Patrick von Platen committed
542
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
543
544
545
546
547
548
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

Patrick von Platen's avatar
Patrick von Platen committed
549
        if latents is None:
550
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
Patrick von Platen's avatar
Patrick von Platen committed
551
552
553
554
555
556
557
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Alt Diffusion v1, v2, and Alt Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

Patrick von Platen's avatar
Patrick von Platen committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            timesteps (`torch.Tensor`):
                generate embedding vectors at these timesteps
            embedding_dim (`int`, *optional*, defaults to 512):
                dimension of the embeddings to generate
            dtype:
                data type of the generated embeddings

        Returns:
            `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
Patrick von Platen's avatar
Patrick von Platen committed
629
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
630
631
632
633
634
635
636
637
638

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

Patrick von Platen's avatar
Patrick von Platen committed
639
    @torch.no_grad()
640
    @replace_example_docstring(EXAMPLE_DOC_STRING)
Patrick von Platen's avatar
Patrick von Platen committed
641
642
    def __call__(
        self,
643
        prompt: Union[str, List[str]] = None,
644
645
        height: Optional[int] = None,
        width: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
646
647
648
649
650
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
651
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Patrick von Platen's avatar
Patrick von Platen committed
652
        latents: Optional[torch.FloatTensor] = None,
653
654
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
Patrick von Platen's avatar
Patrick von Platen committed
655
656
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
657
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
658
        guidance_rescale: float = 0.0,
659
        clip_skip: Optional[int] = None,
660
661
662
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
663
664
    ):
        r"""
665
        The call function to the pipeline for generation.
Patrick von Platen's avatar
Patrick von Platen committed
666
667

        Args:
668
            prompt (`str` or `List[str]`, *optional*):
669
670
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
Patrick von Platen's avatar
Patrick von Platen committed
671
                The height in pixels of the generated image.
672
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
Patrick von Platen's avatar
Patrick von Platen committed
673
674
675
676
677
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
678
679
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
Patrick von Platen's avatar
Patrick von Platen committed
680
            negative_prompt (`str` or `List[str]`, *optional*):
681
682
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
Patrick von Platen's avatar
Patrick von Platen committed
683
684
685
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
686
687
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
688
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
689
690
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
Patrick von Platen's avatar
Patrick von Platen committed
691
            latents (`torch.FloatTensor`, *optional*):
692
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
Patrick von Platen's avatar
Patrick von Platen committed
693
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
694
                tensor is generated by sampling using the supplied random `generator`.
695
            prompt_embeds (`torch.FloatTensor`, *optional*):
696
697
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
698
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
699
700
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
Patrick von Platen's avatar
Patrick von Platen committed
701
            output_type (`str`, *optional*, defaults to `"pil"`):
702
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
Patrick von Platen's avatar
Patrick von Platen committed
703
704
705
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] instead of a
                plain tuple.
706
            cross_attention_kwargs (`dict`, *optional*):
707
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
Patrick von Platen's avatar
Patrick von Platen committed
708
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
709
            guidance_rescale (`float`, *optional*, defaults to 0.0):
710
711
712
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
713
714
715
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
716
717
718
719
720
721
722
723
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
Steven Liu's avatar
Steven Liu committed
724
                `._callback_tensor_inputs` attribute of your pipeline class.
Patrick von Platen's avatar
Patrick von Platen committed
725

726
727
        Examples:

Patrick von Platen's avatar
Patrick von Platen committed
728
729
        Returns:
            [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] or `tuple`:
730
731
732
733
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
Patrick von Platen's avatar
Patrick von Platen committed
734
        """
735
736
737
738
739
740
741
742

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
743
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
744
745
746
747
748
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
749
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
750
751
            )

752
        # 0. Default height and width to unet
Patrick von Platen's avatar
Patrick von Platen committed
753
754
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
755
        # to deal with lora scaling and other possible forward hooks
Patrick von Platen's avatar
Patrick von Platen committed
756
757

        # 1. Check inputs. Raise error if not correct
758
        self.check_inputs(
759
760
761
762
763
764
765
766
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
767
        )
Patrick von Platen's avatar
Patrick von Platen committed
768

769
770
771
772
773
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

Patrick von Platen's avatar
Patrick von Platen committed
774
        # 2. Define call parameters
775
776
777
778
779
780
781
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

Patrick von Platen's avatar
Patrick von Platen committed
782
783
784
        device = self._execution_device

        # 3. Encode input prompt
785
786
787
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
788

789
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
790
791
792
            prompt,
            device,
            num_images_per_prompt,
793
            self.do_classifier_free_guidance,
794
795
796
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
797
            lora_scale=lora_scale,
798
            clip_skip=self.clip_skip,
Patrick von Platen's avatar
Patrick von Platen committed
799
        )
800
801
802
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
803
        if self.do_classifier_free_guidance:
804
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
Patrick von Platen's avatar
Patrick von Platen committed
805
806
807
808
809
810

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
811
        num_channels_latents = self.unet.config.in_channels
Patrick von Platen's avatar
Patrick von Platen committed
812
813
814
815
816
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
817
            prompt_embeds.dtype,
Patrick von Platen's avatar
Patrick von Platen committed
818
819
820
821
822
823
824
825
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

Patrick von Platen's avatar
Patrick von Platen committed
826
827
828
829
830
831
832
833
        # 6.5 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

Patrick von Platen's avatar
Patrick von Platen committed
834
        # 7. Denoising loop
835
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
836
        self._num_timesteps = len(timesteps)
837
838
839
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
840
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
841
842
843
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
844
845
846
847
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
Patrick von Platen's avatar
Patrick von Platen committed
848
                    timestep_cond=timestep_cond,
849
                    cross_attention_kwargs=self.cross_attention_kwargs,
850
851
                    return_dict=False,
                )[0]
852
853

                # perform guidance
854
                if self.do_classifier_free_guidance:
855
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
856
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
857

858
                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
859
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
860
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
861

862
                # compute the previous noisy sample x_t -> x_t-1
863
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
864

865
866
867
868
869
870
871
872
873
874
                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

875
                # call the callback, if provided
876
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
877
878
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
879
880
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
Patrick von Platen's avatar
Patrick von Platen committed
881

882
        if not output_type == "latent":
Will Berman's avatar
Will Berman committed
883
884
885
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
886
887
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
888
889
            image = latents
            has_nsfw_concept = None
Patrick von Platen's avatar
Patrick von Platen committed
890

891
892
        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
893
        else:
894
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
895

896
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
Patrick von Platen's avatar
Patrick von Platen committed
897

898
899
        # Offload all models
        self.maybe_free_model_hooks()
900

Patrick von Platen's avatar
Patrick von Platen committed
901
902
903
904
        if not return_dict:
            return (image, has_nsfw_concept)

        return AltDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)