pipeline_alt_diffusion.py 36.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
16
import warnings
17
from typing import Any, Callable, Dict, List, Optional, Union
Patrick von Platen's avatar
Patrick von Platen committed
18
19

import torch
20
from packaging import version
21
from transformers import CLIPImageProcessor, XLMRobertaTokenizer
Patrick von Platen's avatar
Patrick von Platen committed
22

23
from diffusers.utils import is_accelerate_available, is_accelerate_version
24

Patrick von Platen's avatar
Patrick von Platen committed
25
from ...configuration_utils import FrozenDict
26
from ...image_processor import VaeImageProcessor
27
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
Patrick von Platen's avatar
Patrick von Platen committed
28
from ...models import AutoencoderKL, UNet2DConditionModel
Kashif Rasul's avatar
Kashif Rasul committed
29
from ...schedulers import KarrasDiffusionSchedulers
30
from ...utils import deprecate, logging, randn_tensor, replace_example_docstring
31
from ..pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
35
36
37
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from . import AltDiffusionPipelineOutput, RobertaSeriesModelWithTransformation


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import AltDiffusionPipeline

        >>> pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")

        >>> # "dark elf princess, highly detailed, d & d, fantasy, highly detailed, digital painting, trending on artstation, concept art, sharp focus, illustration, art by artgerm and greg rutkowski and fuji choko and viktoria gavrilenko and hoang lap"
        >>> prompt = "榛戞殫绮剧伒鍏富锛岄潪甯歌缁嗭紝骞绘兂锛岄潪甯歌缁嗭紝鏁板瓧缁樼敾锛屾蹇佃壓鏈紝鏁忛攼鐨勭劍鐐癸紝鎻掑浘"
        >>> image = pipe(prompt).images[0]
        ```
"""

Patrick von Platen's avatar
Patrick von Platen committed
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


Patrick von Platen's avatar
Patrick von Platen committed
69
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline with Stable->Alt, CLIPTextModel->RobertaSeriesModelWithTransformation, CLIPTokenizer->XLMRobertaTokenizer, AltDiffusionSafetyChecker->StableDiffusionSafetyChecker
70
class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
Patrick von Platen's avatar
Patrick von Platen committed
71
72
73
    r"""
    Pipeline for text-to-image generation using Alt Diffusion.

74
75
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Patrick von Platen's avatar
Patrick von Platen committed
76

77
78
79
80
81
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
1lint's avatar
1lint committed
82

Patrick von Platen's avatar
Patrick von Platen committed
83
84
    Args:
        vae ([`AutoencoderKL`]):
85
86
87
88
89
90
91
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.RobertaSeriesModelWithTransformation`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.XLMRobertaTokenizer`]):
            A `XLMRobertaTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
95
96
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
97
98
99
100
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
Patrick von Platen's avatar
Patrick von Platen committed
101
    """
102
    _optional_components = ["safety_checker", "feature_extractor"]
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
108
109

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: RobertaSeriesModelWithTransformation,
        tokenizer: XLMRobertaTokenizer,
        unet: UNet2DConditionModel,
Kashif Rasul's avatar
Kashif Rasul committed
110
        scheduler: KarrasDiffusionSchedulers,
Patrick von Platen's avatar
Patrick von Platen committed
111
        safety_checker: StableDiffusionSafetyChecker,
112
        feature_extractor: CLIPImageProcessor,
113
        requires_safety_checker: bool = True,
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    ):
        super().__init__()

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

144
        if safety_checker is None and requires_safety_checker:
145
            logger.warning(
Patrick von Platen's avatar
Patrick von Platen committed
146
147
148
149
150
151
152
153
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Alt Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

154
155
156
157
158
159
        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

160
161
162
163
164
165
166
        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
Pedro Cuenca's avatar
Pedro Cuenca committed
167
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
168
169
170
171
172
173
174
175
176
177
178
179
180
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

Patrick von Platen's avatar
Patrick von Platen committed
181
182
183
184
185
186
187
188
189
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
Patrick von Platen's avatar
Patrick von Platen committed
190
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
191
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
192
        self.register_to_config(requires_safety_checker=requires_safety_checker)
Patrick von Platen's avatar
Patrick von Platen committed
193

194
195
    def enable_vae_slicing(self):
        r"""
196
197
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
198
199
200
201
202
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
203
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
204
205
206
207
        computing decoding in one step.
        """
        self.vae.disable_slicing()

208
209
    def enable_vae_tiling(self):
        r"""
210
211
212
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
213
214
215
216
217
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
218
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
219
220
221
222
        computing decoding in one step.
        """
        self.vae.disable_tiling()

223
224
    def enable_model_cpu_offload(self, gpu_id=0):
        r"""
225
226
227
228
        Offload all models to CPU to reduce memory usage with a low impact on performance. Moves one whole model at a
        time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs.
        Memory savings are lower than using `enable_sequential_cpu_offload`, but performance is much better due to the
        iterative execution of the `unet`.
229
230
231
232
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
233
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
234
235
236

        device = torch.device(f"cuda:{gpu_id}")

237
238
239
240
        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

241
242
243
244
245
246
247
248
249
250
        hook = None
        for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        if self.safety_checker is not None:
            _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)

        # We'll offload the last model manually.
        self.final_offload_hook = hook

251
252
253
254
255
256
257
258
259
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
260
        lora_scale: Optional[float] = None,
261
    ):
Patrick von Platen's avatar
Patrick von Platen committed
262
263
264
265
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
266
             prompt (`str` or `List[str]`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
267
268
269
270
271
272
273
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
274
            negative_prompt (`str` or `List[str]`, *optional*):
275
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
276
277
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
278
279
280
281
282
283
284
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
285
286
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
Patrick von Platen's avatar
Patrick von Platen committed
287
        """
288
289
290
291
292
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

293
294
295
296
297
298
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
Patrick von Platen's avatar
Patrick von Platen committed
299

300
        if prompt_embeds is None:
301
302
303
304
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

305
306
307
308
309
310
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
Patrick von Platen's avatar
Patrick von Platen committed
311
            )
312
313
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
Patrick von Platen's avatar
Patrick von Platen committed
314

315
316
317
318
319
320
321
322
323
324
            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
Patrick von Platen's avatar
Patrick von Platen committed
325

326
327
328
329
            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None
Patrick von Platen's avatar
Patrick von Platen committed
330

331
332
333
334
335
336
337
338
339
            prompt_embeds = self.text_encoder(
                text_input_ids.to(device),
                attention_mask=attention_mask,
            )
            prompt_embeds = prompt_embeds[0]

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
Patrick von Platen's avatar
Patrick von Platen committed
340
        # duplicate text embeddings for each generation per prompt, using mps friendly method
341
342
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
Patrick von Platen's avatar
Patrick von Platen committed
343
344

        # get unconditional embeddings for classifier free guidance
345
        if do_classifier_free_guidance and negative_prompt_embeds is None:
Patrick von Platen's avatar
Patrick von Platen committed
346
347
348
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
349
            elif prompt is not None and type(prompt) is not type(negative_prompt):
Patrick von Platen's avatar
Patrick von Platen committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

365
366
367
368
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

369
            max_length = prompt_embeds.shape[1]
Patrick von Platen's avatar
Patrick von Platen committed
370
371
372
373
374
375
376
377
378
379
380
381
382
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

383
            negative_prompt_embeds = self.text_encoder(
Patrick von Platen's avatar
Patrick von Platen committed
384
385
386
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
387
            negative_prompt_embeds = negative_prompt_embeds[0]
Patrick von Platen's avatar
Patrick von Platen committed
388

389
        if do_classifier_free_guidance:
Patrick von Platen's avatar
Patrick von Platen committed
390
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
391
392
393
394
395
396
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
Patrick von Platen's avatar
Patrick von Platen committed
397
398
399
400

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
401
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
Patrick von Platen's avatar
Patrick von Platen committed
402

403
        return prompt_embeds
Patrick von Platen's avatar
Patrick von Platen committed
404
405

    def run_safety_checker(self, image, device, dtype):
406
407
408
409
410
411
412
413
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
Patrick von Platen's avatar
Patrick von Platen committed
414
415
416
417
418
419
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    def decode_latents(self, latents):
420
421
422
423
424
425
426
        warnings.warn(
            (
                "The decode_latents method is deprecated and will be removed in a future version. Please"
                " use VaeImageProcessor instead"
            ),
            FutureWarning,
        )
427
        latents = 1 / self.vae.config.scaling_factor * latents
428
        image = self.vae.decode(latents, return_dict=False)[0]
Patrick von Platen's avatar
Patrick von Platen committed
429
        image = (image / 2 + 0.5).clamp(0, 1)
430
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
Patrick von Platen's avatar
Patrick von Platen committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (畏) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to 畏 in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

451
452
453
454
455
456
457
458
459
460
    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
461
462
463
464
465
466
467
468
469
470
471
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

Patrick von Platen's avatar
Patrick von Platen committed
498
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
Patrick von Platen's avatar
Patrick von Platen committed
499
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
500
501
502
503
504
505
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

Patrick von Platen's avatar
Patrick von Platen committed
506
        if latents is None:
507
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
Patrick von Platen's avatar
Patrick von Platen committed
508
509
510
511
512
513
514
515
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
516
    @replace_example_docstring(EXAMPLE_DOC_STRING)
Patrick von Platen's avatar
Patrick von Platen committed
517
518
    def __call__(
        self,
519
        prompt: Union[str, List[str]] = None,
520
521
        height: Optional[int] = None,
        width: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
522
523
524
525
526
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
527
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Patrick von Platen's avatar
Patrick von Platen committed
528
        latents: Optional[torch.FloatTensor] = None,
529
530
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
Patrick von Platen's avatar
Patrick von Platen committed
531
532
533
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
534
        callback_steps: int = 1,
535
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
536
        guidance_rescale: float = 0.0,
Patrick von Platen's avatar
Patrick von Platen committed
537
538
    ):
        r"""
539
        The call function to the pipeline for generation.
Patrick von Platen's avatar
Patrick von Platen committed
540
541

        Args:
542
            prompt (`str` or `List[str]`, *optional*):
543
544
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
Patrick von Platen's avatar
Patrick von Platen committed
545
                The height in pixels of the generated image.
546
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
Patrick von Platen's avatar
Patrick von Platen committed
547
548
549
550
551
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
552
553
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
Patrick von Platen's avatar
Patrick von Platen committed
554
            negative_prompt (`str` or `List[str]`, *optional*):
555
556
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
Patrick von Platen's avatar
Patrick von Platen committed
557
558
559
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
560
561
                Corresponds to parameter eta (畏) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
562
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
563
564
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
Patrick von Platen's avatar
Patrick von Platen committed
565
            latents (`torch.FloatTensor`, *optional*):
566
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
Patrick von Platen's avatar
Patrick von Platen committed
567
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
568
                tensor is generated by sampling using the supplied random `generator`.
569
            prompt_embeds (`torch.FloatTensor`, *optional*):
570
571
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
572
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
573
574
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
Patrick von Platen's avatar
Patrick von Platen committed
575
            output_type (`str`, *optional*, defaults to `"pil"`):
576
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
Patrick von Platen's avatar
Patrick von Platen committed
577
578
579
580
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
581
582
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
Patrick von Platen's avatar
Patrick von Platen committed
583
            callback_steps (`int`, *optional*, defaults to 1):
584
585
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
586
            cross_attention_kwargs (`dict`, *optional*):
587
588
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
589
            guidance_rescale (`float`, *optional*, defaults to 0.7):
590
591
592
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
Patrick von Platen's avatar
Patrick von Platen committed
593

594
595
        Examples:

Patrick von Platen's avatar
Patrick von Platen committed
596
597
        Returns:
            [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] or `tuple`:
598
599
600
601
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.AltDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
Patrick von Platen's avatar
Patrick von Platen committed
602
        """
603
        # 0. Default height and width to unet
Patrick von Platen's avatar
Patrick von Platen committed
604
605
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
Patrick von Platen's avatar
Patrick von Platen committed
606
607

        # 1. Check inputs. Raise error if not correct
608
609
610
        self.check_inputs(
            prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
        )
Patrick von Platen's avatar
Patrick von Platen committed
611
612

        # 2. Define call parameters
613
614
615
616
617
618
619
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

Patrick von Platen's avatar
Patrick von Platen committed
620
621
622
623
624
625
626
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
627
628
629
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
630
631
632
633
634
635
636
637
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
638
            lora_scale=text_encoder_lora_scale,
Patrick von Platen's avatar
Patrick von Platen committed
639
640
641
642
643
644
645
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
646
        num_channels_latents = self.unet.config.in_channels
Patrick von Platen's avatar
Patrick von Platen committed
647
648
649
650
651
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
652
            prompt_embeds.dtype,
Patrick von Platen's avatar
Patrick von Platen committed
653
654
655
656
657
658
659
660
661
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
662
663
664
665
666
667
668
669
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
670
671
672
673
674
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
675
676
                    return_dict=False,
                )[0]
677
678
679
680
681
682

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

683
684
685
686
                if do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

687
                # compute the previous noisy sample x_t -> x_t-1
688
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
689
690

                # call the callback, if provided
691
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
692
693
694
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)
Patrick von Platen's avatar
Patrick von Platen committed
695

696
697
698
699
        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
700
701
            image = latents
            has_nsfw_concept = None
Patrick von Platen's avatar
Patrick von Platen committed
702

703
704
        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
705
        else:
706
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
707

708
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
Patrick von Platen's avatar
Patrick von Platen committed
709

710
711
712
713
        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

Patrick von Platen's avatar
Patrick von Platen committed
714
715
716
717
        if not return_dict:
            return (image, has_nsfw_concept)

        return AltDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)