sd1_clip.py 16.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
import os

3
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils
4
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
5
import torch
6
import traceback
7
import zipfile
8
9
from . import model_management
import contextlib
comfyanonymous's avatar
comfyanonymous committed
10
11
12

class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
13
        to_encode = list(self.empty_tokens)
comfyanonymous's avatar
comfyanonymous committed
14
        for x in token_weight_pairs:
15
16
17
18
19
20
21
22
23
24
25
            tokens = list(map(lambda a: a[0], x))
            to_encode.append(tokens)

        out, pooled = self.encode(to_encode)
        z_empty = out[0:1]
        if pooled.shape[0] > 1:
            first_pooled = pooled[1:2]
        else:
            first_pooled = pooled[0:1]

        output = []
26
27
        for k in range(1, out.shape[0]):
            z = out[k:k+1]
comfyanonymous's avatar
comfyanonymous committed
28
29
            for i in range(len(z)):
                for j in range(len(z[i])):
30
                    weight = token_weight_pairs[k - 1][j][1]
comfyanonymous's avatar
comfyanonymous committed
31
                    z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
32
33
            output.append(z)

comfyanonymous's avatar
comfyanonymous committed
34
        if (len(output) == 0):
35
            return z_empty.cpu(), first_pooled.cpu()
36
        return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
comfyanonymous's avatar
comfyanonymous committed
37
38
39
40
41
42
43
44
45
46
47
48

class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None):  # clip-vit-base-patch32
        super().__init__()
        assert layer in self.LAYERS
49
        self.num_layers = 12
comfyanonymous's avatar
comfyanonymous committed
50
51
52
53
54
55
        if textmodel_path is not None:
            self.transformer = CLIPTextModel.from_pretrained(textmodel_path)
        else:
            if textmodel_json_config is None:
                textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
            config = CLIPTextConfig.from_json_file(textmodel_json_config)
56
            self.num_layers = config.num_hidden_layers
57
58
59
            with comfy.ops.use_comfy_ops():
                with modeling_utils.no_init_weights():
                    self.transformer = CLIPTextModel(config)
comfyanonymous's avatar
comfyanonymous committed
60
61
62
63
64
65
66

        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
        self.empty_tokens = [[49406] + [49407] * 76]
67
68
        self.text_projection = None
        self.layer_norm_hidden_state = True
comfyanonymous's avatar
comfyanonymous committed
69
70
        if layer == "hidden":
            assert layer_idx is not None
71
            assert abs(layer_idx) <= self.num_layers
comfyanonymous's avatar
comfyanonymous committed
72
            self.clip_layer(layer_idx)
73
        self.layer_default = (self.layer, self.layer_idx)
comfyanonymous's avatar
comfyanonymous committed
74
75
76
77
78
79
80
81

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
82
        if abs(layer_idx) >= self.num_layers:
comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

88
89
90
91
    def reset_clip_layer(self):
        self.layer = self.layer_default[0]
        self.layer_idx = self.layer_default[1]

92
93
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
94
        next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
95
96
97
98
99
100
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
101
102
                    if y == token_dict_size: #EOS token
                        y = -1
103
104
                    tokens_temp += [y]
                else:
105
106
107
108
109
110
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
111
112
            while len(tokens_temp) < len(x):
                tokens_temp += [self.empty_tokens[0][-1]]
113
114
            out_tokens += [tokens_temp]

115
        n = token_dict_size
116
        if len(embedding_weights) > 0:
117
118
            new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
119
120
121
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
122
            new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
123
            self.transformer.set_input_embeddings(new_embedding)
124
125
126
127
128
129

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one

        return processed_tokens
130

comfyanonymous's avatar
comfyanonymous committed
131
    def forward(self, tokens):
132
        backup_embeds = self.transformer.get_input_embeddings()
133
        device = backup_embeds.weight.device
134
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
135
136
137
138
        tokens = torch.LongTensor(tokens).to(device)

        if backup_embeds.weight.dtype != torch.float32:
            precision_scope = torch.autocast
comfyanonymous's avatar
comfyanonymous committed
139
        else:
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
            precision_scope = contextlib.nullcontext

        with precision_scope(model_management.get_autocast_device(device)):
            outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
            self.transformer.set_input_embeddings(backup_embeds)

            if self.layer == "last":
                z = outputs.last_hidden_state
            elif self.layer == "pooled":
                z = outputs.pooler_output[:, None, :]
            else:
                z = outputs.hidden_states[self.layer_idx]
                if self.layer_norm_hidden_state:
                    z = self.transformer.text_model.final_layer_norm(z)

            pooled_output = outputs.pooler_output
            if self.text_projection is not None:
157
                pooled_output = pooled_output.to(self.text_projection.device) @ self.text_projection
158
        return z.float(), pooled_output.float()
comfyanonymous's avatar
comfyanonymous committed
159
160
161
162

    def encode(self, tokens):
        return self(tokens)

163
164
165
    def load_sd(self, sd):
        return self.transformer.load_state_dict(sd, strict=False)

comfyanonymous's avatar
comfyanonymous committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

243
244
245
246
247
248
249
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
250

251
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
252
253
254
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

255
256
    embedding_directory = expand_directory_list(embedding_directory)

257
258
259
260
261
262
263
264
265
266
    valid_file = None
    for embed_dir in embedding_directory:
        embed_path = os.path.join(embed_dir, embedding_name)
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
267
        else:
268
269
270
271
272
273
274
275
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
276

277
278
    embed_out = None

279
280
281
282
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
283
        else:
284
            if 'weights_only' in torch.load.__code__.co_varnames:
285
286
287
288
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
289
290
291
292
293
294
295
296
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

297
298
299
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
300
301
302
303
304
305
306
307
308
309
            embed_out = next(iter(values))
        elif isinstance(embed, list):
            out_list = []
            for x in range(len(embed)):
                for k in embed[x]:
                    t = embed[x][k]
                    if t.shape[-1] != embedding_size:
                        continue
                    out_list.append(t.reshape(-1, t.shape[-1]))
            embed_out = torch.cat(out_list, dim=0)
310
311
        elif embed_key is not None and embed_key in embed:
            embed_out = embed[embed_key]
312
313
        else:
            values = embed.values()
314
            embed_out = next(iter(values))
315
    return embed_out
316

comfyanonymous's avatar
comfyanonymous committed
317
class SD1Tokenizer:
318
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l'):
comfyanonymous's avatar
comfyanonymous committed
319
320
321
322
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
        self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
        self.max_length = max_length
323
324
        self.max_tokens_per_section = self.max_length - 2

comfyanonymous's avatar
comfyanonymous committed
325
326
327
328
329
330
        empty = self.tokenizer('')["input_ids"]
        self.start_token = empty[0]
        self.end_token = empty[1]
        self.pad_with_end = pad_with_end
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
331
332
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
333
        self.embedding_identifier = "embedding:"
334
        self.embedding_size = embedding_size
335
        self.embedding_key = embedding_key
336

337
    def _try_get_embedding(self, embedding_name:str):
338
339
340
341
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
342
        embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
343
344
345
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
346
                embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
347
348
349
350
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


351
    def tokenize_with_weights(self, text:str, return_word_ids=False):
352
353
354
355
356
357
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
BlenderNeko's avatar
BlenderNeko committed
358
359
360
361
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
comfyanonymous's avatar
comfyanonymous committed
362
363
364
365

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

366
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
367
        tokens = []
368
369
370
371
372
373
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
374
375
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
376
                    if embed is None:
377
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
378
                    else:
379
                        if len(embed.shape) == 1:
380
                            tokens.append([(embed, weight)])
381
                        else:
382
383
384
385
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
386
                    else:
387
388
389
                        continue
                #parse word
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][1:-1]])
390

391
392
        #reshape token array to CLIP input size
        batched_tokens = []
BlenderNeko's avatar
BlenderNeko committed
393
        batch = [(self.start_token, 1.0, 0)]
394
395
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
396
397
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
398

399
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
400
401
402
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
403
404
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
405
                        batch.append((self.end_token, 1.0, 0))
406
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
407
                    #add end token and pad
408
                    else:
BlenderNeko's avatar
BlenderNeko committed
409
410
411
412
                        batch.append((self.end_token, 1.0, 0))
                        batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
                    #start new batch
                    batch = [(self.start_token, 1.0, 0)]
413
                    batched_tokens.append(batch)
414
                else:
415
416
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
417

418
        #fill last batch
BlenderNeko's avatar
BlenderNeko committed
419
        batch.extend([(self.end_token, 1.0, 0)] + [(pad_token, 1.0, 0)] * (self.max_length - len(batch) - 1))
comfyanonymous's avatar
comfyanonymous committed
420

421
422
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
423

424
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
425
426
427
428


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))