sd1_clip.py 13.9 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
import os

3
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils
4
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
5
import torch
6
import traceback
7
import zipfile
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
        z_empty = self.encode(self.empty_tokens)
        output = []
        for x in token_weight_pairs:
            tokens = [list(map(lambda a: a[0], x))]
            z = self.encode(tokens)
            for i in range(len(z)):
                for j in range(len(z[i])):
                    weight = x[j][1]
                    z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
            output += [z]
        if (len(output) == 0):
            return self.encode(self.empty_tokens)
        return torch.cat(output, dim=-2)

class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None):  # clip-vit-base-patch32
        super().__init__()
        assert layer in self.LAYERS
        if textmodel_path is not None:
            self.transformer = CLIPTextModel.from_pretrained(textmodel_path)
        else:
            if textmodel_json_config is None:
                textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
            config = CLIPTextConfig.from_json_file(textmodel_json_config)
42
43
44
            with comfy.ops.use_comfy_ops():
                with modeling_utils.no_init_weights():
                    self.transformer = CLIPTextModel(config)
comfyanonymous's avatar
comfyanonymous committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

        self.device = device
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
        self.empty_tokens = [[49406] + [49407] * 76]
        if layer == "hidden":
            assert layer_idx is not None
            assert abs(layer_idx) <= 12
            self.clip_layer(layer_idx)

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
        if abs(layer_idx) >= 12:
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

71
72
73
74
75
76
77
78
79
80
81
    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
        next_new_token = token_dict_size = current_embeds.weight.shape[0]
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
                    tokens_temp += [y]
                else:
82
83
84
85
86
87
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
88
89
            while len(tokens_temp) < len(x):
                tokens_temp += [self.empty_tokens[0][-1]]
90
91
92
93
94
95
96
97
98
99
100
101
            out_tokens += [tokens_temp]

        if len(embedding_weights) > 0:
            new_embedding = torch.nn.Embedding(next_new_token, current_embeds.weight.shape[1])
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:]
            n = token_dict_size
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
            self.transformer.set_input_embeddings(new_embedding)
        return out_tokens

comfyanonymous's avatar
comfyanonymous committed
102
    def forward(self, tokens):
103
104
        backup_embeds = self.transformer.get_input_embeddings()
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
comfyanonymous's avatar
comfyanonymous committed
105
106
        tokens = torch.LongTensor(tokens).to(self.device)
        outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
107
        self.transformer.set_input_embeddings(backup_embeds)
comfyanonymous's avatar
comfyanonymous committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

        if self.layer == "last":
            z = outputs.last_hidden_state
        elif self.layer == "pooled":
            z = outputs.pooler_output[:, None, :]
        else:
            z = outputs.hidden_states[self.layer_idx]
            z = self.transformer.text_model.final_layer_norm(z)

        return z

    def encode(self, tokens):
        return self(tokens)

def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

199
200
201
202
203
204
205
def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)
206

207
def load_embed(embedding_name, embedding_directory):
208
209
210
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

211
212
    embedding_directory = expand_directory_list(embedding_directory)

213
214
215
216
217
218
219
220
221
222
    valid_file = None
    for embed_dir in embedding_directory:
        embed_path = os.path.join(embed_dir, embedding_name)
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
223
        else:
224
225
226
227
228
229
230
231
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file
232

233
234
    embed_out = None

235
236
237
238
    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
239
        else:
240
            if 'weights_only' in torch.load.__code__.co_varnames:
241
242
243
244
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
245
246
247
248
249
250
251
252
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

253
254
255
256
257
258
259
    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
        else:
            values = embed.values()
        embed_out = next(iter(values))
    return embed_out
260

comfyanonymous's avatar
comfyanonymous committed
261
class SD1Tokenizer:
262
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None):
comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
        self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
        self.max_length = max_length
267
268
        self.max_tokens_per_section = self.max_length - 2

comfyanonymous's avatar
comfyanonymous committed
269
270
271
272
273
274
        empty = self.tokenizer('')["input_ids"]
        self.start_token = empty[0]
        self.end_token = empty[1]
        self.pad_with_end = pad_with_end
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
275
276
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
277
278
        self.embedding_identifier = "embedding:"

279
    def _try_get_embedding(self, embedding_name:str):
280
281
282
283
284
285
286
287
288
289
290
291
292
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
        embed = load_embed(embedding_name, self.embedding_directory)
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
                embed = load_embed(stripped, self.embedding_directory)
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


293
    def tokenize_with_weights(self, text:str, return_word_ids=False):
294
295
296
297
298
299
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
BlenderNeko's avatar
BlenderNeko committed
300
301
302
303
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
comfyanonymous's avatar
comfyanonymous committed
304
305
306
307

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

308
        #tokenize words
comfyanonymous's avatar
comfyanonymous committed
309
        tokens = []
310
311
312
313
314
315
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
316
317
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
318
                    if embed is None:
319
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
320
                    else:
321
                        if len(embed.shape) == 1:
322
                            tokens.append([(embed, weight)])
323
                        else:
324
325
326
327
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
328
                    else:
329
330
331
                        continue
                #parse word
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][1:-1]])
332

333
334
        #reshape token array to CLIP input size
        batched_tokens = []
BlenderNeko's avatar
BlenderNeko committed
335
        batch = [(self.start_token, 1.0, 0)]
336
337
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
338
339
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length
BlenderNeko's avatar
BlenderNeko committed
340

341
            while len(t_group) > 0:
BlenderNeko's avatar
BlenderNeko committed
342
343
344
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
345
346
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
BlenderNeko's avatar
BlenderNeko committed
347
                        batch.append((self.end_token, 1.0, 0))
348
                        t_group = t_group[remaining_length:]
BlenderNeko's avatar
BlenderNeko committed
349
                    #add end token and pad
350
                    else:
BlenderNeko's avatar
BlenderNeko committed
351
352
353
354
                        batch.append((self.end_token, 1.0, 0))
                        batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
                    #start new batch
                    batch = [(self.start_token, 1.0, 0)]
355
                    batched_tokens.append(batch)
356
                else:
357
358
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []
359

360
        #fill last batch
BlenderNeko's avatar
BlenderNeko committed
361
        batch.extend([(self.end_token, 1.0, 0)] + [(pad_token, 1.0, 0)] * (self.max_length - len(batch) - 1))
comfyanonymous's avatar
comfyanonymous committed
362

363
364
        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
comfyanonymous's avatar
comfyanonymous committed
365

366
        return batched_tokens
comfyanonymous's avatar
comfyanonymous committed
367
368
369
370


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))