model_management.py 13.8 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
4

5
6
7
8
9
10
11
class VRAMState(Enum):
    CPU = 0
    NO_VRAM = 1
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
    MPS = 5
12

13
14
15
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
16

17
total_vram = 0
18

19
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
20
xpu_available = False
21

22
directml_enabled = False
23
if args.directml is not None:
24
25
    import torch_directml
    directml_enabled = True
26
27
28
29
30
31
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
32
    # torch_directml.disable_tiled_resources(True)
33
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
34

35
36
try:
    import torch
37
    if directml_enabled:
38
        pass #TODO
39
40
41
42
43
44
45
46
    else:
        try:
            import intel_extension_for_pytorch as ipex
            if torch.xpu.is_available():
                xpu_available = True
                total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
        except:
            total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
47
    total_ram = psutil.virtual_memory().total / (1024 * 1024)
48
    if not args.normalvram and not args.cpu:
49
        if lowvram_available and total_vram <= 4096:
50
            print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
51
            set_vram_to = VRAMState.LOW_VRAM
comfyanonymous's avatar
comfyanonymous committed
52
        elif total_vram > total_ram * 1.1 and total_vram > 14336:
53
            print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
54
            vram_state = VRAMState.HIGH_VRAM
55
56
57
except:
    pass

58
59
60
61
62
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

63
64
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
65
66
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
67
68
69
70
else:
    try:
        import xformers
        import xformers.ops
71
        XFORMERS_IS_AVAILABLE = True
72
73
74
75
76
77
78
79
80
81
82
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
83
    except:
84
        XFORMERS_IS_AVAILABLE = False
85

86
87
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
if ENABLE_PYTORCH_ATTENTION:
88
89
90
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
91
    XFORMERS_IS_AVAILABLE = False
92

93
94
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
95
    lowvram_available = True
96
97
98
99
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
elif args.highvram:
    vram_state = VRAMState.HIGH_VRAM
100

101
102
103
104
105
FORCE_FP32 = False
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

106

107
108

if lowvram_available:
109
110
    try:
        import accelerate
111
112
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
113
114
115
    except Exception as e:
        import traceback
        print(traceback.format_exc())
116
117
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
118

119

120
121
try:
    if torch.backends.mps.is_available():
122
        vram_state = VRAMState.MPS
123
124
125
except:
    pass

126
127
if args.cpu:
    vram_state = VRAMState.CPU
128

129
print(f"Set vram state to: {vram_state.name}")
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def get_torch_device():
    global xpu_available
    global directml_enabled
    if directml_enabled:
        global directml_device
        return directml_device
    if vram_state == VRAMState.MPS:
        return torch.device("mps")
    if vram_state == VRAMState.CPU:
        return torch.device("cpu")
    else:
        if xpu_available:
            return torch.device("xpu")
        else:
            return torch.cuda.current_device()

def get_torch_device_name(device):
    if hasattr(device, 'type'):
        return "{}".format(device.type)
    return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))

try:
    print("Using device:", get_torch_device_name(get_torch_device()))
except:
    print("Could not pick default device.")

157
158

current_loaded_model = None
comfyanonymous's avatar
comfyanonymous committed
159
current_gpu_controlnets = []
160

161
162
163
model_accelerated = False


164
165
def unload_model():
    global current_loaded_model
166
    global model_accelerated
comfyanonymous's avatar
comfyanonymous committed
167
    global current_gpu_controlnets
168
169
    global vram_state

170
    if current_loaded_model is not None:
171
172
173
174
        if model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
            model_accelerated = False

175
        #never unload models from GPU on high vram
176
        if vram_state != VRAMState.HIGH_VRAM:
177
            current_loaded_model.model.cpu()
178
            current_loaded_model.model_patches_to("cpu")
179
180
        current_loaded_model.unpatch_model()
        current_loaded_model = None
181

182
    if vram_state != VRAMState.HIGH_VRAM:
183
184
185
186
        if len(current_gpu_controlnets) > 0:
            for n in current_gpu_controlnets:
                n.cpu()
            current_gpu_controlnets = []
187
188
189
190


def load_model_gpu(model):
    global current_loaded_model
191
192
193
    global vram_state
    global model_accelerated

194
195
196
197
198
199
200
201
    if model is current_loaded_model:
        return
    unload_model()
    try:
        real_model = model.patch_model()
    except Exception as e:
        model.unpatch_model()
        raise e
202

203
204
205
206
207
208
209
    torch_dev = get_torch_device()
    model.model_patches_to(torch_dev)

    vram_set_state = vram_state
    if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
        model_size = model.model_size()
        current_free_mem = get_free_memory(torch_dev)
210
        lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
211
212
213
        if model_size > (current_free_mem - (512 * 1024 * 1024)): #only switch to lowvram if really necessary
            vram_set_state = VRAMState.LOW_VRAM

214
    current_loaded_model = model
215
216

    if vram_set_state == VRAMState.CPU:
217
        pass
218
    elif vram_set_state == VRAMState.MPS:
Yurii Mazurevich's avatar
Yurii Mazurevich committed
219
220
221
        mps_device = torch.device("mps")
        real_model.to(mps_device)
        pass
222
    elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM:
223
        model_accelerated = False
comfyanonymous's avatar
comfyanonymous committed
224
        real_model.to(get_torch_device())
225
    else:
226
        if vram_set_state == VRAMState.NO_VRAM:
227
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
228
229
        elif vram_set_state == VRAMState.LOW_VRAM:
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
comfyanonymous's avatar
comfyanonymous committed
230

comfyanonymous's avatar
comfyanonymous committed
231
        accelerate.dispatch_model(real_model, device_map=device_map, main_device=get_torch_device())
232
        model_accelerated = True
233
    return current_loaded_model
234

235
def load_controlnet_gpu(control_models):
comfyanonymous's avatar
comfyanonymous committed
236
    global current_gpu_controlnets
237
    global vram_state
238
    if vram_state == VRAMState.CPU:
239
        return
240

241
    if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
242
243
244
        for m in control_models:
            if hasattr(m, 'set_lowvram'):
                m.set_lowvram(True)
245
246
247
        #don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
        return

248
249
250
251
    models = []
    for m in control_models:
        models += m.get_models()

comfyanonymous's avatar
comfyanonymous committed
252
253
254
255
    for m in current_gpu_controlnets:
        if m not in models:
            m.cpu()

256
    device = get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
257
258
    current_gpu_controlnets = []
    for m in models:
259
        current_gpu_controlnets.append(m.to(device))
comfyanonymous's avatar
comfyanonymous committed
260

261

262
263
def load_if_low_vram(model):
    global vram_state
264
    if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
comfyanonymous's avatar
comfyanonymous committed
265
        return model.to(get_torch_device())
266
267
268
269
    return model

def unload_if_low_vram(model):
    global vram_state
270
    if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
271
272
273
        return model.cpu()
    return model

274
275
276
277
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
278

279

280
def xformers_enabled():
281
282
    global xpu_available
    global directml_enabled
283
    if vram_state == VRAMState.CPU:
284
        return False
285
286
287
288
    if xpu_available:
        return False
    if directml_enabled:
        return False
289
    return XFORMERS_IS_AVAILABLE
290

291
292
293
294
295

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
296
297

    return XFORMERS_ENABLED_VAE
298

299
def pytorch_attention_enabled():
300
    global ENABLE_PYTORCH_ATTENTION
301
302
    return ENABLE_PYTORCH_ATTENTION

303
304
305
306
307
308
309
310
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
        if torch.version.cuda: #pytorch flash attention only works on Nvidia
            return True
    return False

space-nuko's avatar
space-nuko committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def get_total_memory(dev=None, torch_total_too=False):
    global xpu_available
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
        elif xpu_available:
            mem_total = torch.xpu.get_device_properties(dev).total_memory
            mem_total_torch = mem_total
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda + mem_total_torch

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

338
def get_free_memory(dev=None, torch_free_too=False):
339
    global xpu_available
340
    global directml_enabled
341
    if dev is None:
342
        dev = get_torch_device()
343

Yurii Mazurevich's avatar
Yurii Mazurevich committed
344
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
345
346
347
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
348
349
350
351
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
        elif xpu_available:
352
353
354
355
356
357
358
359
360
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
            mem_free_torch = mem_free_total
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
361
362
363
364
365

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
366
367
368

def maximum_batch_area():
    global vram_state
369
    if vram_state == VRAMState.NO_VRAM:
370
371
372
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
373
    if xformers_enabled() or pytorch_attention_flash_attention():
374
        #TODO: this needs to be tweaked
375
        area = 20 * memory_free
376
377
378
    else:
        #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
        area = ((memory_free - 1024) * 0.9) / (0.6)
379
    return int(max(area, 0))
380
381
382

def cpu_mode():
    global vram_state
383
    return vram_state == VRAMState.CPU
384

Yurii Mazurevich's avatar
Yurii Mazurevich committed
385
386
def mps_mode():
    global vram_state
387
    return vram_state == VRAMState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
388

389
def should_use_fp16():
390
    global xpu_available
391
392
    global directml_enabled

393
394
395
    if FORCE_FP32:
        return False

396
397
398
    if directml_enabled:
        return False

399
    if cpu_mode() or mps_mode() or xpu_available:
400
401
402
403
404
        return False #TODO ?

    if torch.cuda.is_bf16_supported():
        return True

comfyanonymous's avatar
comfyanonymous committed
405
    props = torch.cuda.get_device_properties("cuda")
406
407
408
409
    if props.major < 7:
        return False

    #FP32 is faster on those cards?
410
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600"]
411
412
413
414
415
416
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

417
418
def soft_empty_cache():
    global xpu_available
comfyanonymous's avatar
comfyanonymous committed
419
420
421
422
    global vram_state
    if vram_state == VRAMState.MPS:
        torch.mps.empty_cache()
    elif xpu_available:
423
424
425
426
427
428
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
        if torch.version.cuda: #This seems to make things worse on ROCm so I only do it for cuda
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()