nodes_custom_sampler.py 11.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import comfy.samplers
import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling
import latent_preview
5
import torch
6
import comfy.utils
comfyanonymous's avatar
comfyanonymous committed
7

8
9
10
11
12
13
14
15

class BasicScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
16
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
17
18
19
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
20
    CATEGORY = "sampling/custom_sampling/schedulers"
21
22
23

    FUNCTION = "get_sigmas"

24
25
26
27
28
    def get_sigmas(self, model, scheduler, steps, denoise):
        total_steps = steps
        if denoise < 1.0:
            total_steps = int(steps/denoise)

29
30
        comfy.model_management.load_models_gpu([model])
        sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, total_steps).cpu()
31
        sigmas = sigmas[-(steps + 1):]
32
33
34
        return (sigmas, )


comfyanonymous's avatar
comfyanonymous committed
35
36
37
38
39
40
41
42
43
44
45
class KarrasScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
46
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
47
48
49
50
51
52
53

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

54
55
56
57
58
59
60
61
62
63
class ExponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
64
    CATEGORY = "sampling/custom_sampling/schedulers"
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min):
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
        return (sigmas, )

class PolyexponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
83
    CATEGORY = "sampling/custom_sampling/schedulers"
84
85
86
87
88
89
90

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
91
92
93
94
95
96
class SDTurboScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "steps": ("INT", {"default": 1, "min": 1, "max": 10}),
97
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
98
99
100
101
102
103
104
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/schedulers"

    FUNCTION = "get_sigmas"

105
106
107
    def get_sigmas(self, model, steps, denoise):
        start_step = 10 - int(10 * denoise)
        timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
108
109
110
        inner_model = model.patch_model(patch_weights=False)
        sigmas = inner_model.model_sampling.sigma(timesteps)
        model.unpatch_model()
comfyanonymous's avatar
comfyanonymous committed
111
112
113
        sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
114
115
116
117
118
119
120
121
122
123
124
class VPScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), #TODO: fix default values
                     "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
125
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
126
127
128
129
130
131
132

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, beta_d, beta_min, eps_s):
        sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
133
134
135
136
137
138
139
140
141
class SplitSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                    "step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     }
                }
    RETURN_TYPES = ("SIGMAS","SIGMAS")
142
    CATEGORY = "sampling/custom_sampling/sigmas"
comfyanonymous's avatar
comfyanonymous committed
143
144
145
146
147

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas, step):
        sigmas1 = sigmas[:step + 1]
comfyanonymous's avatar
comfyanonymous committed
148
        sigmas2 = sigmas[step:]
comfyanonymous's avatar
comfyanonymous committed
149
        return (sigmas1, sigmas2)
comfyanonymous's avatar
comfyanonymous committed
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
class FlipSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                     }
                }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/sigmas"

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas):
        sigmas = sigmas.flip(0)
        if sigmas[0] == 0:
            sigmas[0] = 0.0001
        return (sigmas,)

comfyanonymous's avatar
comfyanonymous committed
169
170
171
172
class KSamplerSelect:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
173
                    {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ),
comfyanonymous's avatar
comfyanonymous committed
174
175
176
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
177
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
178
179
180
181

    FUNCTION = "get_sampler"

    def get_sampler(self, sampler_name):
182
        sampler = comfy.samplers.sampler_object(sampler_name)
comfyanonymous's avatar
comfyanonymous committed
183
184
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
185
186
187
188
189
190
191
192
193
194
195
class SamplerDPMPP_2M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"solver_type": (['midpoint', 'heun'], ),
                     "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
196
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
197
198
199
200
201
202
203
204

    FUNCTION = "get_sampler"

    def get_sampler(self, solver_type, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_2m_sde"
        else:
            sampler_name = "dpmpp_2m_sde_gpu"
205
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
comfyanonymous's avatar
comfyanonymous committed
206
207
208
        return (sampler, )


comfyanonymous's avatar
comfyanonymous committed
209
210
211
212
213
214
215
216
217
218
219
class SamplerDPMPP_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
220
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
221
222
223
224
225
226
227
228

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, r, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_sde"
        else:
            sampler_name = "dpmpp_sde_gpu"
229
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
comfyanonymous's avatar
comfyanonymous committed
230
231
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
232
233
234
235
236
class SamplerCustom:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
237
                    "add_noise": ("BOOLEAN", {"default": True}),
comfyanonymous's avatar
comfyanonymous committed
238
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
239
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
240
241
242
243
244
245
246
247
248
249
250
251
252
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

253
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
254
255
256
257

    def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]
258
        if not add_noise:
comfyanonymous's avatar
comfyanonymous committed
259
260
261
262
263
264
265
266
267
268
269
270
            noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
        else:
            batch_inds = latent["batch_index"] if "batch_index" in latent else None
            noise = comfy.sample.prepare_noise(latent_image, noise_seed, batch_inds)

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)

271
        disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
comfyanonymous's avatar
comfyanonymous committed
272
273
274
275
276
277
278
279
280
281
282
283
284
        samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

NODE_CLASS_MAPPINGS = {
    "SamplerCustom": SamplerCustom,
285
    "BasicScheduler": BasicScheduler,
comfyanonymous's avatar
comfyanonymous committed
286
    "KarrasScheduler": KarrasScheduler,
287
288
    "ExponentialScheduler": ExponentialScheduler,
    "PolyexponentialScheduler": PolyexponentialScheduler,
comfyanonymous's avatar
comfyanonymous committed
289
    "VPScheduler": VPScheduler,
comfyanonymous's avatar
comfyanonymous committed
290
    "SDTurboScheduler": SDTurboScheduler,
comfyanonymous's avatar
comfyanonymous committed
291
    "KSamplerSelect": KSamplerSelect,
comfyanonymous's avatar
comfyanonymous committed
292
    "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
comfyanonymous's avatar
comfyanonymous committed
293
    "SamplerDPMPP_SDE": SamplerDPMPP_SDE,
comfyanonymous's avatar
comfyanonymous committed
294
    "SplitSigmas": SplitSigmas,
295
    "FlipSigmas": FlipSigmas,
comfyanonymous's avatar
comfyanonymous committed
296
}