nodes_custom_sampler.py 11 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import comfy.samplers
import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling
import latent_preview
5
import torch
6
import comfy.utils
comfyanonymous's avatar
comfyanonymous committed
7

8
9
10
11
12
13
14
15

class BasicScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
16
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
17
18
19
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
20
    CATEGORY = "sampling/custom_sampling/schedulers"
21
22
23

    FUNCTION = "get_sigmas"

24
25
26
27
28
29
30
    def get_sigmas(self, model, scheduler, steps, denoise):
        total_steps = steps
        if denoise < 1.0:
            total_steps = int(steps/denoise)

        sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, total_steps).cpu()
        sigmas = sigmas[-(steps + 1):]
31
32
33
        return (sigmas, )


comfyanonymous's avatar
comfyanonymous committed
34
35
36
37
38
39
40
41
42
43
44
class KarrasScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
45
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
46
47
48
49
50
51
52

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

53
54
55
56
57
58
59
60
61
62
class ExponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
63
    CATEGORY = "sampling/custom_sampling/schedulers"
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min):
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
        return (sigmas, )

class PolyexponentialScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
82
    CATEGORY = "sampling/custom_sampling/schedulers"
83
84
85
86
87
88
89

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, sigma_max, sigma_min, rho):
        sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
90
91
92
93
94
95
class SDTurboScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "steps": ("INT", {"default": 1, "min": 1, "max": 10}),
96
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
102
103
                      }
               }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/schedulers"

    FUNCTION = "get_sigmas"

104
105
106
    def get_sigmas(self, model, steps, denoise):
        start_step = 10 - int(10 * denoise)
        timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
comfyanonymous's avatar
comfyanonymous committed
107
108
109
110
        sigmas = model.model.model_sampling.sigma(timesteps)
        sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
111
112
113
114
115
116
117
118
119
120
121
class VPScheduler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), #TODO: fix default values
                     "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
                     "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}),
                    }
               }
    RETURN_TYPES = ("SIGMAS",)
122
    CATEGORY = "sampling/custom_sampling/schedulers"
comfyanonymous's avatar
comfyanonymous committed
123
124
125
126
127
128
129

    FUNCTION = "get_sigmas"

    def get_sigmas(self, steps, beta_d, beta_min, eps_s):
        sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s)
        return (sigmas, )

comfyanonymous's avatar
comfyanonymous committed
130
131
132
133
134
135
136
137
138
class SplitSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                    "step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     }
                }
    RETURN_TYPES = ("SIGMAS","SIGMAS")
139
    CATEGORY = "sampling/custom_sampling/sigmas"
comfyanonymous's avatar
comfyanonymous committed
140
141
142
143
144

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas, step):
        sigmas1 = sigmas[:step + 1]
comfyanonymous's avatar
comfyanonymous committed
145
        sigmas2 = sigmas[step:]
comfyanonymous's avatar
comfyanonymous committed
146
        return (sigmas1, sigmas2)
comfyanonymous's avatar
comfyanonymous committed
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
class FlipSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"sigmas": ("SIGMAS", ),
                     }
                }
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "sampling/custom_sampling/sigmas"

    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigmas):
        sigmas = sigmas.flip(0)
        if sigmas[0] == 0:
            sigmas[0] = 0.0001
        return (sigmas,)

comfyanonymous's avatar
comfyanonymous committed
166
167
168
169
class KSamplerSelect:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
170
                    {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ),
comfyanonymous's avatar
comfyanonymous committed
171
172
173
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
174
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
175
176
177
178

    FUNCTION = "get_sampler"

    def get_sampler(self, sampler_name):
179
        sampler = comfy.samplers.sampler_object(sampler_name)
comfyanonymous's avatar
comfyanonymous committed
180
181
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
182
183
184
185
186
187
188
189
190
191
192
class SamplerDPMPP_2M_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"solver_type": (['midpoint', 'heun'], ),
                     "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
193
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
194
195
196
197
198
199
200
201

    FUNCTION = "get_sampler"

    def get_sampler(self, solver_type, eta, s_noise, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_2m_sde"
        else:
            sampler_name = "dpmpp_2m_sde_gpu"
202
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
comfyanonymous's avatar
comfyanonymous committed
203
204
205
        return (sampler, )


comfyanonymous's avatar
comfyanonymous committed
206
207
208
209
210
211
212
213
214
215
216
class SamplerDPMPP_SDE:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
                     "noise_device": (['gpu', 'cpu'], ),
                      }
               }
    RETURN_TYPES = ("SAMPLER",)
217
    CATEGORY = "sampling/custom_sampling/samplers"
comfyanonymous's avatar
comfyanonymous committed
218
219
220
221
222
223
224
225

    FUNCTION = "get_sampler"

    def get_sampler(self, eta, s_noise, r, noise_device):
        if noise_device == 'cpu':
            sampler_name = "dpmpp_sde"
        else:
            sampler_name = "dpmpp_sde_gpu"
226
        sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
comfyanonymous's avatar
comfyanonymous committed
227
228
        return (sampler, )

comfyanonymous's avatar
comfyanonymous committed
229
230
231
232
233
class SamplerCustom:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
234
                    "add_noise": ("BOOLEAN", {"default": True}),
comfyanonymous's avatar
comfyanonymous committed
235
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
236
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
237
238
239
240
241
242
243
244
245
246
247
248
249
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "sampler": ("SAMPLER", ),
                    "sigmas": ("SIGMAS", ),
                    "latent_image": ("LATENT", ),
                     }
                }

    RETURN_TYPES = ("LATENT","LATENT")
    RETURN_NAMES = ("output", "denoised_output")

    FUNCTION = "sample"

250
    CATEGORY = "sampling/custom_sampling"
comfyanonymous's avatar
comfyanonymous committed
251
252
253
254

    def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
        latent = latent_image
        latent_image = latent["samples"]
255
        if not add_noise:
comfyanonymous's avatar
comfyanonymous committed
256
257
258
259
260
261
262
263
264
265
266
267
            noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
        else:
            batch_inds = latent["batch_index"] if "batch_index" in latent else None
            noise = comfy.sample.prepare_noise(latent_image, noise_seed, batch_inds)

        noise_mask = None
        if "noise_mask" in latent:
            noise_mask = latent["noise_mask"]

        x0_output = {}
        callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)

268
        disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
comfyanonymous's avatar
comfyanonymous committed
269
270
271
272
273
274
275
276
277
278
279
280
281
        samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)

        out = latent.copy()
        out["samples"] = samples
        if "x0" in x0_output:
            out_denoised = latent.copy()
            out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
        else:
            out_denoised = out
        return (out, out_denoised)

NODE_CLASS_MAPPINGS = {
    "SamplerCustom": SamplerCustom,
282
    "BasicScheduler": BasicScheduler,
comfyanonymous's avatar
comfyanonymous committed
283
    "KarrasScheduler": KarrasScheduler,
284
285
    "ExponentialScheduler": ExponentialScheduler,
    "PolyexponentialScheduler": PolyexponentialScheduler,
comfyanonymous's avatar
comfyanonymous committed
286
    "VPScheduler": VPScheduler,
comfyanonymous's avatar
comfyanonymous committed
287
    "SDTurboScheduler": SDTurboScheduler,
comfyanonymous's avatar
comfyanonymous committed
288
    "KSamplerSelect": KSamplerSelect,
comfyanonymous's avatar
comfyanonymous committed
289
    "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
comfyanonymous's avatar
comfyanonymous committed
290
    "SamplerDPMPP_SDE": SamplerDPMPP_SDE,
comfyanonymous's avatar
comfyanonymous committed
291
    "SplitSigmas": SplitSigmas,
292
    "FlipSigmas": FlipSigmas,
comfyanonymous's avatar
comfyanonymous committed
293
}