sd.py 37.6 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
comfyanonymous's avatar
comfyanonymous committed
4
5
6

import sd1_clip
import sd2_clip
7
import model_management
8
9
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
10
import yaml
comfyanonymous's avatar
comfyanonymous committed
11
from .cldm import cldm
12
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
13
14

from . import utils
comfyanonymous's avatar
comfyanonymous committed
15

16
def load_torch_file(ckpt):
comfyanonymous's avatar
comfyanonymous committed
17
18
19
20
21
22
23
    if ckpt.lower().endswith(".safetensors"):
        import safetensors.torch
        sd = safetensors.torch.load_file(ckpt, device="cpu")
    else:
        pl_sd = torch.load(ckpt, map_location="cpu")
        if "global_step" in pl_sd:
            print(f"Global Step: {pl_sd['global_step']}")
24
25
26
27
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
28
29
    return sd

30
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
comfyanonymous's avatar
comfyanonymous committed
31
32
33
34
35
36
37
38
39
    m, u = model.load_state_dict(sd, strict=False)

    k = list(sd.keys())
    for x in k:
        # print(x)
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
40
41
42
43
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    keys_to_replace = {
        "cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
        "cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight",
        "cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight",
        "cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias",
    }

    for x in keys_to_replace:
        if x in sd:
            sd[keys_to_replace[x]] = sd.pop(x)

    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(24):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
                k = "cond_stage_model.model.transformer.resblocks.{}.{}.{}".format(resblock, x, y)
                k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, resblock_to_replace[x], y)
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
            k_from = "cond_stage_model.model.transformer.resblocks.{}.attn.in_proj_{}".format(resblock, y)
            if k_from in sd:
                weights = sd.pop(k_from)
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
                    k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, p[x], y)
                    sd[k_to] = weights[1024*x:1024*(x + 1)]

comfyanonymous's avatar
comfyanonymous committed
81
82
83
84
85
86
87
88
89
90
91
92
93
    for x in load_state_dict_to:
        x.load_state_dict(sd, strict=False)

    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.eval()
    return model

94
95
96
97
98
99
100
101
102
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

comfyanonymous's avatar
comfyanonymous committed
103
LORA_UNET_MAP_ATTENTIONS = {
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    "proj_in": "proj_in",
    "proj_out": "proj_out",
    "transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q",
    "transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k",
    "transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v",
    "transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0",
    "transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q",
    "transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k",
    "transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v",
    "transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0",
    "transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj",
    "transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2",
}

comfyanonymous's avatar
comfyanonymous committed
118
119
120
121
122
123
LORA_UNET_MAP_RESNET = {
    "in_layers.2": "resnets_{}_conv1",
    "emb_layers.1": "resnets_{}_time_emb_proj",
    "out_layers.3": "resnets_{}_conv2",
    "skip_connection": "resnets_{}_conv_shortcut"
}
124
125
126
127
128
129

def load_lora(path, to_load):
    lora = load_torch_file(path)
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
130
131
132
133
134
135
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

136
137
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
138
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
139

140
        if A_name in lora.keys():
141
142
143
144
145
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
146
147
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
148
149
150
151
152

        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
153
154
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
155
        if hada_w1_a_name in lora.keys():
156
157
158
159
160
161
162
163
164
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
165
166
167
168
169
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

170
171
172
173
174
175
176
177
178
179
180
181
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
        tk = "model.diffusion_model.input_blocks.{}.1".format(b)
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
182
        for c in LORA_UNET_MAP_ATTENTIONS:
183
184
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
185
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
186
                key_map[lora_key] = k
187
188
189
                up_counter += 1
        if up_counter >= 4:
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
190
    for c in LORA_UNET_MAP_ATTENTIONS:
191
192
        k = "model.diffusion_model.middle_block.1.{}.weight".format(c)
        if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
193
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
194
            key_map[lora_key] = k
195
196
197
198
    counter = 3
    for b in range(12):
        tk = "model.diffusion_model.output_blocks.{}.1".format(b)
        up_counter = 0
comfyanonymous's avatar
comfyanonymous committed
199
        for c in LORA_UNET_MAP_ATTENTIONS:
200
201
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
202
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
203
                key_map[lora_key] = k
204
205
206
207
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
208
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
209
    for b in range(24):
210
211
212
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
213
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
214
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
215

comfyanonymous's avatar
comfyanonymous committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

    #Locon stuff
    ds_counter = 0
    counter = 0
    for b in range(12):
        tk = "model.diffusion_model.input_blocks.{}.0".format(b)
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.op.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
                key_map[lora_key] = k
                ds_counter += 1
        if key_in:
            counter += 1

    counter = 0
    for b in range(3):
        tk = "model.diffusion_model.middle_block.{}".format(b)
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
                key_map[lora_key] = k
                key_in = True
        if key_in:
            counter += 1

    counter = 0
    us_counter = 0
    for b in range(12):
        tk = "model.diffusion_model.output_blocks.{}.0".format(b)
        key_in = False
        for c in LORA_UNET_MAP_RESNET:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
                key_map[lora_key] = k
                key_in = True
        for bb in range(3):
            k = "{}.{}.conv.weight".format(tk[:-2], bb)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
                key_map[lora_key] = k
                us_counter += 1
        if key_in:
            counter += 1

271
272
273
274
275
276
277
    return key_map

class ModelPatcher:
    def __init__(self, model):
        self.model = model
        self.patches = []
        self.backup = {}
278
        self.model_options = {"transformer_options":{}}
279
280
281
282

    def clone(self):
        n = ModelPatcher(self.model)
        n.patches = self.patches[:]
283
        n.model_options = copy.deepcopy(self.model_options)
284
285
        return n

286
287
288
289
290
291
    def set_model_tomesd(self, ratio):
        self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}

    def model_dtype(self):
        return self.model.diffusion_model.dtype

292
293
294
295
    def add_patches(self, patches, strength=1.0):
        p = {}
        model_sd = self.model.state_dict()
        for k in patches:
296
            if k in model_sd:
297
298
299
300
301
302
303
304
305
                p[k] = patches[k]
        self.patches += [(strength, p)]
        return p.keys()

    def patch_model(self):
        model_sd = self.model.state_dict()
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
306
                key = k
comfyanonymous's avatar
comfyanonymous committed
307
                if key not in model_sd:
308
309
310
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
311
312
313
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
314
315

                alpha = p[0]
comfyanonymous's avatar
comfyanonymous committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

                if len(v) == 4: #lora/locon
                    mat1 = v[0]
                    mat2 = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / mat2.shape[0]
                    if v[3] is not None:
                        #locon mid weights, hopefully the math is fine because I didn't properly test it
                        final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                        mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
                else: #loha
                    w1a = v[0]
                    w1b = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / w1b.shape[0]
                    w2a = v[3]
                    w2b = v[4]
334
335
336
337
338
339
340
341
342
343
                    if v[5] is not None: #cp decomposition
                        t1 = v[5]
                        t2 = v[6]
                        m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                        m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                    else:
                        m1 = torch.mm(w1a.float(), w1b.float())
                        m2 = torch.mm(w2a.float(), w2b.float())

                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
344
345
346
        return self.model
    def unpatch_model(self):
        model_sd = self.model.state_dict()
347
348
        keys = list(self.backup.keys())
        for k in keys:
349
            model_sd[k][:] = self.backup[k]
350
351
            del self.backup[k]

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
369
370
371


class CLIP:
372
373
374
    def __init__(self, config={}, embedding_directory=None, no_init=False):
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
375
        self.target_clip = config["target"]
376
377
378
379
380
        if "params" in config:
            params = config["params"]
        else:
            params = {}

comfyanonymous's avatar
comfyanonymous committed
381
382
383
384
385
386
        if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder":
            clip = sd2_clip.SD2ClipModel
            tokenizer = sd2_clip.SD2Tokenizer
        elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder":
            clip = sd1_clip.SD1ClipModel
            tokenizer = sd1_clip.SD1Tokenizer
387
388

        self.cond_stage_model = clip(**(params))
389
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
390
        self.patcher = ModelPatcher(self.cond_stage_model)
391
        self.layer_idx = None
392
393
394
395
396
397
398

    def clone(self):
        n = CLIP(no_init=True)
        n.target_clip = self.target_clip
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
399
        n.layer_idx = self.layer_idx
400
401
        return n

402
403
404
    def load_from_state_dict(self, sd):
        self.cond_stage_model.transformer.load_state_dict(sd, strict=False)

405
406
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
407

408
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
409
        self.layer_idx = layer_idx
410

comfyanonymous's avatar
comfyanonymous committed
411
    def encode(self, text):
412
413
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
comfyanonymous's avatar
comfyanonymous committed
414
        tokens = self.tokenizer.tokenize_with_weights(text)
415
416
417
418
419
420
421
        try:
            self.patcher.patch_model()
            cond = self.cond_stage_model.encode_token_weights(tokens)
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
comfyanonymous's avatar
comfyanonymous committed
422
423
424
        return cond

class VAE:
425
    def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
426
427
428
429
430
431
432
433
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss", ckpt_path=ckpt_path)
        else:
            self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path)
        self.first_stage_model = self.first_stage_model.eval()
        self.scale_factor = scale_factor
434
435
        if device is None:
            device = model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
436
437
        self.device = device

438
439
440
441
442
443
444
445
446
447
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
        decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
        output = torch.clamp((
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8))
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

    def decode(self, samples_in):
448
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
449
        self.first_stage_model = self.first_stage_model.to(self.device)
450
        try:
451
452
453
454
455
456
457
458
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(1. / self.scale_factor * samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
459
460
461
462
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

comfyanonymous's avatar
comfyanonymous committed
463
464
465
466
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

467
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
468
469
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
470
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
471
472
473
        self.first_stage_model = self.first_stage_model.cpu()
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
474
    def encode(self, pixel_samples):
475
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
476
477
478
479
480
481
482
        self.first_stage_model = self.first_stage_model.to(self.device)
        pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
        samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor
        self.first_stage_model = self.first_stage_model.cpu()
        samples = samples.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
483
484
485
486
487
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
        pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
        samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4)
488
489
490
        samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4)
        samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4)
        samples /= 3.0
comfyanonymous's avatar
comfyanonymous committed
491
492
493
        self.first_stage_model = self.first_stage_model.cpu()
        samples = samples.cpu()
        return samples
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

def resize_image_to(tensor, target_latent_tensor, batched_number):
    tensor = utils.common_upscale(tensor, target_latent_tensor.shape[3] * 8, target_latent_tensor.shape[2] * 8, 'nearest-exact', "center")
    target_batch_size = target_latent_tensor.shape[0]

    current_batch_size = tensor.shape[0]
    print(current_batch_size, target_batch_size)
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
516
class ControlNet:
517
    def __init__(self, control_model, device=None):
comfyanonymous's avatar
comfyanonymous committed
518
519
520
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
521
        self.strength = 1.0
522
523
        if device is None:
            device = model_management.get_torch_device()
524
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
525
        self.previous_controlnet = None
comfyanonymous's avatar
comfyanonymous committed
526

527
    def get_control(self, x_noisy, t, cond_txt, batched_number):
comfyanonymous's avatar
comfyanonymous committed
528
529
        control_prev = None
        if self.previous_controlnet is not None:
530
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
comfyanonymous's avatar
comfyanonymous committed
531

532
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
533
534
535
536
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
537
            self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).to(self.control_model.dtype).to(self.device)
538
539
540
541
542
543

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

544
        with precision_scope(model_management.get_autocast_device(self.device)):
545
            self.control_model = model_management.load_if_low_vram(self.control_model)
546
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
547
            self.control_model = model_management.unload_if_low_vram(self.control_model)
548
        out = {'middle':[], 'output': []}
549
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
550
551

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
552
553
554
555
556
557
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
558
            x = control[i]
559
            x *= self.strength
560
561
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
562

comfyanonymous's avatar
comfyanonymous committed
563
564
565
566
567
568
569
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
570
        return out
comfyanonymous's avatar
comfyanonymous committed
571

572
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
573
        self.cond_hint_original = cond_hint
574
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
575
576
        return self

comfyanonymous's avatar
comfyanonymous committed
577
578
579
580
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
581
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
582
583
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
584
585
586
587
588
589
590
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
        c = ControlNet(self.control_model)
        c.cond_hint_original = self.cond_hint_original
591
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
592
593
        return c

comfyanonymous's avatar
comfyanonymous committed
594
595
596
597
598
599
600
    def get_control_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_control_models()
        out.append(self.control_model)
        return out

601
def load_controlnet(ckpt_path, model=None):
comfyanonymous's avatar
comfyanonymous committed
602
603
604
605
606
607
608
609
610
611
612
    controlnet_data = load_torch_file(ckpt_path)
    pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    pth = False
    sd2 = False
    key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
    elif key in controlnet_data:
        pass
    else:
613
614
615
616
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
617
618

    context_dim = controlnet_data[key].shape[1]
619
620

    use_fp16 = False
621
    if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16:
622
623
        use_fp16 = True

comfyanonymous's avatar
comfyanonymous committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    if context_dim == 768:
        #SD1.x
        control_model = cldm.ControlNet(image_size=32,
                                        in_channels=4,
                                        hint_channels=3,
                                        model_channels=320,
                                        attention_resolutions=[ 4, 2, 1 ],
                                        num_res_blocks=2,
                                        channel_mult=[ 1, 2, 4, 4 ],
                                        num_heads=8,
                                        use_spatial_transformer=True,
                                        transformer_depth=1,
                                        context_dim=context_dim,
                                        use_checkpoint=True,
                                        legacy=False,
                                        use_fp16=use_fp16)
    else:
        #SD2.x
        control_model = cldm.ControlNet(image_size=32,
                                        in_channels=4,
                                        hint_channels=3,
                                        model_channels=320,
                                        attention_resolutions=[ 4, 2, 1 ],
                                        num_res_blocks=2,
                                        channel_mult=[ 1, 2, 4, 4 ],
                                        num_head_channels=64,
                                        use_spatial_transformer=True,
                                        use_linear_in_transformer=True,
                                        transformer_depth=1,
                                        context_dim=context_dim,
                                        use_checkpoint=True,
                                        legacy=False,
                                        use_fp16=use_fp16)
comfyanonymous's avatar
comfyanonymous committed
657
    if pth:
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
                        sd_key = "model.diffusion_model.{}".format(x[len(c_m):])
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
673
674
675
676
677
678
679
680
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        w.load_state_dict(controlnet_data, strict=False)
    else:
        control_model.load_state_dict(controlnet_data, strict=False)

681
682
683
    if use_fp16:
        control_model = control_model.half()

comfyanonymous's avatar
comfyanonymous committed
684
685
686
    control = ControlNet(control_model)
    return control

687
class T2IAdapter:
688
    def __init__(self, t2i_model, channels_in, device=None):
689
690
691
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
692
693
        if device is None:
            device = model_management.get_torch_device()
694
695
696
697
698
699
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

700
    def get_control(self, x_noisy, t, cond_txt, batched_number):
701
702
        control_prev = None
        if self.previous_controlnet is not None:
703
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
704
705
706
707
708

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
709
            self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).float().to(self.device)
710
711
712
713
714
715
716
717
718
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
719
        autocast_enabled = torch.is_autocast_enabled()
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def get_control_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_control_models()
        return out

773
def load_t2i_adapter(t2i_data):
774
    keys = t2i_data.keys()
775
    if "body.0.in_conv.weight" in keys:
776
777
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
778
    elif 'conv_in.weight' in keys:
779
780
        cin = t2i_data['conv_in.weight'].shape[1]
        model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
781
782
    else:
        return None
783
784
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
785

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
    model_data = load_torch_file(ckpt_path)
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


806
807
808
809
810
811
812
813
814
815
def load_clip(ckpt_path, embedding_directory=None):
    clip_data = load_torch_file(ckpt_path)
    config = {}
    if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
        config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
    else:
        config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
    clip = CLIP(config=config, embedding_directory=embedding_directory)
    clip.load_from_state_dict(clip_data)
    return clip
comfyanonymous's avatar
comfyanonymous committed
816

817
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
818
819
    with open(config_path, 'r') as stream:
        config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
820
821
822
823
824
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

825
826
827
828
829
830
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
            if "use_fp16" in model_config_params["unet_config"]["params"]:
                fp16 = model_config_params["unet_config"]["params"]["use_fp16"]

comfyanonymous's avatar
comfyanonymous committed
831
832
833
834
835
836
837
838
839
840
841
842
843
844
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE(scale_factor=scale_factor, config=vae_config)
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
845
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
846
847
848
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

849
    model = instantiate_from_config(config["model"])
850
851
    sd = load_torch_file(ckpt_path)
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
852
853
854
855

    if fp16:
        model = model.half()

856
    return (ModelPatcher(model), clip, vae)
857
858


859
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
860
861
862
863
864
    sd = load_torch_file(ckpt_path)
    sd_keys = sd.keys()
    clip = None
    vae = None

865
866
    fp16 = model_management.should_use_fp16()

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE()
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
        clip_config = {}
        if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
            clip_config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
        else:
            clip_config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

    sd_config = {
        "linear_start": 0.00085,
        "linear_end": 0.012,
        "num_timesteps_cond": 1,
        "log_every_t": 200,
        "timesteps": 1000,
        "first_stage_key": "jpg",
        "cond_stage_key": "txt",
        "image_size": 64,
        "channels": 4,
        "cond_stage_trainable": False,
        "monitor": "val/loss_simple_ema",
        "scale_factor": 0.18215,
        "use_ema": False,
    }

    unet_config = {
        "use_checkpoint": True,
        "image_size": 32,
        "out_channels": 4,
        "attention_resolutions": [
            4,
            2,
            1
        ],
        "num_res_blocks": 2,
        "channel_mult": [
            1,
            2,
            4,
            4
        ],
        "use_spatial_transformer": True,
        "transformer_depth": 1,
        "legacy": False
    }

    if len(sd['model.diffusion_model.input_blocks.1.1.proj_in.weight'].shape) == 2:
        unet_config['use_linear_in_transformer'] = True

    unet_config["use_fp16"] = fp16
    unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0]
    unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
    unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]

    sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
    model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}

    if unet_config["in_channels"] > 4: #inpainting model
        sd_config["conditioning_key"] = "hybrid"
        sd_config["finetune_keys"] = None
        model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
    else:
        sd_config["conditioning_key"] = "crossattn"

    if unet_config["context_dim"] == 1024:
        unet_config["num_head_channels"] = 64 #SD2.x
    else:
        unet_config["num_heads"] = 8 #SD1.x

comfyanonymous's avatar
comfyanonymous committed
947
948
949
950
951
    if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
        k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
        out = sd[k]
        if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
            sd_config["parameterization"] = 'v'
952
953
954
955

    model = instantiate_from_config(model_config)
    model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)

956
957
958
    if fp16:
        model = model.half()

959
    return (ModelPatcher(model), clip, vae)