router.rs 93.2 KB
Newer Older
1
2
// gRPC Router Implementation

3
use std::collections::HashMap;
4
5
6
7
8
9
use std::sync::Arc;

use async_trait::async_trait;
use axum::{
    body::Body,
    extract::Request,
10
    http::{header::CONTENT_TYPE, HeaderMap, HeaderValue, StatusCode},
11
    response::{IntoResponse, Response},
12
    Json,
13
};
14
15
16
17
use bytes::Bytes;
use std::io;
use tokio::sync::mpsc;
use tokio_stream::wrappers::UnboundedReceiverStream;
18
19
use tracing::{debug, error, info, warn};

20
use crate::config::types::RetryConfig;
21
use crate::core::{ConnectionMode, Worker, WorkerRegistry, WorkerType};
22
use crate::grpc_client::{proto, SglangSchedulerClient};
23
use crate::metrics::RouterMetrics;
24
use crate::policies::PolicyRegistry;
25
26
use crate::protocols::spec::ChatMessage;
use crate::protocols::spec::{
27
    ChatChoice, ChatCompletionMessage, ChatCompletionRequest, ChatCompletionResponse,
28
29
30
    ChatCompletionStreamResponse, ChatMessageDelta, ChatStreamChoice, CompletionRequest,
    EmbeddingRequest, FunctionCallDelta, FunctionCallResponse, GenerateRequest, RerankRequest,
    ResponsesGetParams, ResponsesRequest, StringOrArray, Tool, ToolCall, ToolCallDelta, ToolChoice,
31
    ToolChoiceValue, Usage,
32
};
33
use crate::reasoning_parser::{ParserResult, ReasoningParserFactory};
34
use crate::routers::RouterTrait;
35
36
use crate::server::AppContext;
use crate::tokenizer::chat_template::{ChatTemplateContentFormat, ChatTemplateParams};
37
38
39
use crate::tokenizer::stop::{
    SequenceDecoderOutput, StopSequenceDecoder, StopSequenceDecoderBuilder,
};
40
use crate::tokenizer::traits::Tokenizer;
41
use crate::tokenizer::HuggingFaceTokenizer;
42
use crate::tool_parser::{StreamingParseResult, ToolParserFactory};
43
use proto::generate_response::Response::{Chunk, Complete, Error};
44
use serde_json::{json, Map, Value};
45
use std::time::{Instant, SystemTime, UNIX_EPOCH};
46
use tokio_stream::StreamExt;
47
use uuid::Uuid;
48

49
50
51
52
53
54
55
// Data structures for processing
#[derive(Debug)]
pub struct ProcessedMessages {
    pub text: String,
    pub multimodal_inputs: Option<proto::MultimodalInputs>,
    pub stop_sequences: Option<StringOrArray>,
}
56

57
/// gRPC router implementation for SGLang
58
#[derive(Clone)]
59
#[allow(dead_code)]
60
pub struct GrpcRouter {
61
62
    worker_registry: Arc<WorkerRegistry>,
    policy_registry: Arc<PolicyRegistry>,
63
    tokenizer: Arc<dyn Tokenizer>,
64
    reasoning_parser_factory: ReasoningParserFactory,
65
    tool_parser_factory: ToolParserFactory,
66
67
68
69
    dp_aware: bool,
    api_key: Option<String>,
    retry_config: RetryConfig,
}
70
71

impl GrpcRouter {
72
    /// Create a new gRPC router
73
    pub async fn new(ctx: &Arc<AppContext>) -> Result<Self, String> {
74
75
76
77
78
79
80
81
82
83
84
        // Extract necessary components from context
        let tokenizer = ctx
            .tokenizer
            .as_ref()
            .ok_or_else(|| "gRPC router requires tokenizer".to_string())?
            .clone();
        let reasoning_parser_factory = ctx
            .reasoning_parser_factory
            .as_ref()
            .ok_or_else(|| "gRPC router requires reasoning parser factory".to_string())?
            .clone();
85
86
87
88
89
        let tool_parser_factory = ctx
            .tool_parser_factory
            .as_ref()
            .ok_or_else(|| "gRPC router requires tool parser factory".to_string())?
            .clone();
90

91
92
        let worker_registry = ctx.worker_registry.clone();
        let policy_registry = ctx.policy_registry.clone();
Chang Su's avatar
Chang Su committed
93

94
        let workers = worker_registry.get_workers_filtered(
95
            None,
96
            Some(WorkerType::Regular),
97
            Some(ConnectionMode::Grpc { port: None }),
98
            false,
99
100
        );

101
102
        RouterMetrics::set_active_workers(workers.len());
        info!("gRPC router found {} workers in registry", workers.len());
103
104

        Ok(GrpcRouter {
105
106
            worker_registry,
            policy_registry,
107
108
            tokenizer,
            reasoning_parser_factory,
109
            tool_parser_factory,
110
111
112
            dp_aware: ctx.router_config.dp_aware,
            api_key: ctx.router_config.api_key.clone(),
            retry_config: ctx.router_config.effective_retry_config(),
113
114
        })
    }
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    /// Main route_chat implementation
    async fn route_chat_impl(
        &self,
        _headers: Option<&HeaderMap>,
        body: &ChatCompletionRequest,
        model_id: Option<&str>,
    ) -> Response {
        debug!(
            "Processing chat completion request for model: {:?}",
            model_id
        );

        // Step 1: Select worker (fail fast if no workers available)
        let worker = match self.select_worker_for_request(model_id, None) {
            Some(w) => w,
            None => {
                warn!("No available workers for model: {:?}", model_id);
                return (StatusCode::SERVICE_UNAVAILABLE, "No available workers").into_response();
            }
        };

        debug!("Selected worker: {}", worker.url());

139
        // Step 2: Get gRPC client from worker
140
141
142
        let client = match Self::get_grpc_client_from_worker(&worker).await {
            Ok(client) => client,
            Err(response) => return response,
143
144
        };

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        // Step 3: Filter tools if needed for allowed_tools or specific function
        // Only clone body if we need to modify tools
        let mut body_with_filtered_tools;
        let body_ref = match &body.tool_choice {
            Some(ToolChoice::AllowedTools { tools: allowed, .. }) if body.tools.is_some() => {
                body_with_filtered_tools = body.clone();
                let all_tools = body_with_filtered_tools.tools.as_ref().unwrap();
                let allowed_names: std::collections::HashSet<&str> =
                    allowed.iter().map(|t| t.name.as_str()).collect();
                let filtered_tools: Vec<Tool> = all_tools
                    .iter()
                    .filter(|t| allowed_names.contains(t.function.name.as_str()))
                    .cloned()
                    .collect();
                body_with_filtered_tools.tools = Some(filtered_tools);
                &body_with_filtered_tools
            }
            Some(ToolChoice::Function { function, .. }) if body.tools.is_some() => {
                body_with_filtered_tools = body.clone();
                let all_tools = body_with_filtered_tools.tools.as_ref().unwrap();
                let filtered_tools: Vec<Tool> = all_tools
                    .iter()
                    .filter(|t| t.function.name == function.name)
                    .cloned()
                    .collect();
                body_with_filtered_tools.tools = Some(filtered_tools);
                &body_with_filtered_tools
            }
            _ => body, // No filtering needed, use original
        };

        // Step 4: Process messages and apply chat template
        let processed_messages = match self.process_chat_messages(body_ref) {
178
179
180
181
182
183
184
            Ok(msgs) => msgs,
            Err(e) => {
                error!("Failed to process chat messages: {}", e);
                return (StatusCode::BAD_REQUEST, e.to_string()).into_response();
            }
        };

185
        // Step 5: Tokenize the processed text
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        let encoding = match self.tokenizer.encode(&processed_messages.text) {
            Ok(encoding) => encoding,
            Err(e) => {
                error!("Tokenization failed: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Tokenization failed: {}", e),
                )
                    .into_response();
            }
        };

        let token_ids = encoding.token_ids().to_vec();
        debug!("Tokenized {} tokens from input", token_ids.len());

201
202
203
        // Step 6: Build tool constraints if needed
        // body_ref already has filtered tools if needed
        let tool_call_constraint = body_ref.tools.as_ref().and_then(|tools| {
204
            self.generate_tool_constraints(tools, &body.tool_choice, &body.model)
205
        });
206

207
        // Step 7: Build the base gRPC request (use body_ref with filtered tools if applicable)
208
        let request_id = format!("chatcmpl-{}", Uuid::new_v4());
209
        let request = match client.build_generate_request(
210
            request_id,
211
            body_ref,
212
            processed_messages.text.clone(),
213
            token_ids,
214
215
216
217
            processed_messages.multimodal_inputs,
            tool_call_constraint, // Pass the full tuple (type, value)
        ) {
            Ok(request) => request,
218
            Err(e) => {
219
                error!("Failed to build gRPC request: {}", e);
220
221
                return (
                    StatusCode::BAD_REQUEST,
222
                    format!("Invalid request parameters: {}", e),
223
224
225
226
227
                )
                    .into_response();
            }
        };

228
        // Step 7: Handle streaming vs non-streaming
229
        if body.stream {
230
            self.handle_streaming_chat(client, request, body).await
231
        } else {
232
            self.handle_non_streaming_chat(client, request, body).await
233
234
235
        }
    }

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    /// Main route_generate implementation
    async fn route_generate_impl(
        &self,
        _headers: Option<&HeaderMap>,
        body: &GenerateRequest,
        model_id: Option<&str>,
    ) -> Response {
        debug!("Processing generate request for model: {:?}", model_id);

        // Step 1: Resolve input (text, prompt, or input_ids)
        let (original_text, token_ids) = match self.resolve_generate_input(body) {
            Ok(res) => res,
            Err(msg) => {
                error!("Invalid generate request: {}", msg);
                return (StatusCode::BAD_REQUEST, msg).into_response();
            }
        };

        debug!("Resolved input with {} tokens", token_ids.len());

        // Step 2: Select worker (fail fast if no workers available)
        let worker = match self.select_worker_for_request(model_id, original_text.as_deref()) {
            Some(w) => w,
            None => {
                warn!("No available workers for model: {:?}", model_id);
                return (StatusCode::SERVICE_UNAVAILABLE, "No available workers").into_response();
            }
        };

        debug!("Selected worker: {}", worker.url());

        // Step 3: Get gRPC client from worker
        let client = match Self::get_grpc_client_from_worker(&worker).await {
            Ok(client) => client,
            Err(response) => return response,
        };

        // Step 4: Build the gRPC request
        let request_id = body
            .rid
            .clone()
            .unwrap_or_else(|| format!("gen-{}", Uuid::new_v4()));

        let request = match client.build_plain_generate_request(
            request_id.clone(),
            body,
            original_text.clone(),
            token_ids,
        ) {
            Ok(req) => req,
            Err(e) => {
                error!("Failed to build generate request: {}", e);
                return (StatusCode::BAD_REQUEST, e).into_response();
            }
        };

        // Step 5: Get weight version for response metadata
        let weight_version = worker
            .metadata()
            .labels
            .get("weight_version")
            .cloned()
            .unwrap_or_else(|| "default".to_string());

        // Step 6: Handle streaming vs non-streaming
        if body.stream {
            // TODO: Implement streaming support for generate endpoint
            return (
                StatusCode::NOT_IMPLEMENTED,
                "Streaming generate over gRPC is not supported yet",
            )
                .into_response();
        }

        self.handle_non_streaming_generate(client, request, body, request_id, weight_version)
            .await
    }

    /// Get gRPC client from worker, returning appropriate error response on failure
    async fn get_grpc_client_from_worker(
        worker: &Arc<dyn Worker>,
    ) -> Result<SglangSchedulerClient, Response> {
        let client_arc = worker
            .get_grpc_client()
            .await
            .map_err(|e| {
                error!("Failed to get gRPC client from worker: {}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Failed to get gRPC client: {}", e),
                )
                    .into_response()
            })?
            .ok_or_else(|| {
                error!("Selected worker is not a gRPC worker");
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    "Selected worker is not configured for gRPC",
                )
                    .into_response()
            })?;

        let client = client_arc.lock().await.clone();
        Ok(client)
    }

342
343
344
345
346
    /// Select a worker for the request
    fn select_worker_for_request(
        &self,
        model_id: Option<&str>,
        text: Option<&str>,
347
    ) -> Option<Arc<dyn Worker>> {
348
349
350
351
        // Get workers for the specified model, filtered by connection mode
        let workers = self.worker_registry.get_workers_filtered(
            model_id,
            Some(WorkerType::Regular),
352
            Some(ConnectionMode::Grpc { port: None }),
353
354
355
356
            false, // get all workers, we'll filter by is_available() next
        );

        // Filter by availability (health + circuit breaker)
357
        let available: Vec<Arc<dyn Worker>> = workers
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            .iter()
            .filter(|w| w.is_available())
            .cloned()
            .collect();

        if available.is_empty() {
            return None;
        }

        // Get the appropriate policy for this model
        let policy = match model_id {
            Some(model) => self.policy_registry.get_policy_or_default(model),
            None => self.policy_registry.get_default_policy(),
        };

        // Select worker using the policy
        let idx = policy.select_worker(&available, text)?;
        Some(available[idx].clone())
    }
377
378
379
380
381
382
383

    /// Process chat messages and apply template
    fn process_chat_messages(
        &self,
        request: &ChatCompletionRequest,
    ) -> Result<ProcessedMessages, String> {
        // Use the tokenizer's chat template - we require HuggingFace tokenizer for gRPC
384
385
386
387
        let formatted_text = if let Some(hf_tokenizer) = self
            .tokenizer
            .as_any()
            .downcast_ref::<HuggingFaceTokenizer>()
388
        {
389
390
            // Get content format and transform messages accordingly
            let content_format = hf_tokenizer.chat_template_content_format();
391
392
393
394
395
396
397
            let mut transformed_messages =
                Self::process_content_format(&request.messages, content_format)?;

            // Process tool call arguments in assistant messages
            Self::process_tool_call_arguments(&mut transformed_messages)?;

            // Convert tools to JSON values for template processing
398
            let tools_json: Option<Vec<Value>> = request
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
                .tools
                .as_ref()
                .map(|tools| {
                    tools
                        .iter()
                        .map(serde_json::to_value)
                        .collect::<Result<Vec<_>, _>>()
                })
                .transpose()
                .map_err(|e| format!("Failed to serialize tools: {}", e))?;

            // Build template kwargs, merging reasoning_effort if present
            let mut combined_template_kwargs = std::collections::HashMap::new();

            // Add reasoning_effort if present (like Python does)
            if let Some(reasoning_effort) = &request.reasoning_effort {
                combined_template_kwargs.insert(
                    "reasoning_effort".to_string(),
417
                    Value::String(reasoning_effort.clone()),
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
                );
            }

            // Add any additional template kwargs from request
            if let Some(template_kwargs) = &request.chat_template_kwargs {
                for (key, value) in template_kwargs {
                    combined_template_kwargs.insert(key.clone(), value.clone());
                }
            }

            let final_template_kwargs = if combined_template_kwargs.is_empty() {
                None
            } else {
                Some(&combined_template_kwargs)
            };

            let params = ChatTemplateParams {
                add_generation_prompt: true,
                continue_final_message: request.continue_final_message,
                tools: tools_json.as_deref(),
                template_kwargs: final_template_kwargs,
                ..Default::default()
            };

            // Handle assistant prefix for continue_final_message
            let assistant_prefix = if request.continue_final_message
                && !transformed_messages.is_empty()
                && transformed_messages
                    .last()
                    .and_then(|msg| msg.get("role"))
                    .and_then(|v| v.as_str())
                    == Some("assistant")
            {
                // Pop the last message to handle it separately
                let last_msg = transformed_messages.pop().unwrap();
                last_msg
                    .get("content")
                    .and_then(|v| v.as_str())
                    .map(|s| s.to_string())
            } else {
                None
            };

            // Apply chat template with the (now possibly shorter) list of messages
            let rendered = hf_tokenizer
                .apply_chat_template(&transformed_messages, params)
                .map_err(|e| format!("Failed to apply chat template: {}", e))?;
465

466
467
468
469
470
471
            // Append assistant prefix if we have one
            if let Some(prefix) = assistant_prefix {
                format!("{}{}", rendered, prefix)
            } else {
                rendered
            }
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        } else {
            return Err(
                "gRPC router requires HuggingFace tokenizer with chat template support".to_string(),
            );
        };

        // Placeholder for multimodal inputs
        let multimodal_inputs = None;

        Ok(ProcessedMessages {
            text: formatted_text,
            multimodal_inputs,
            stop_sequences: request.stop.clone(),
        })
    }

488
489
    /// Process messages based on content format for ANY message type
    fn process_content_format(
490
491
492
        messages: &[ChatMessage],
        content_format: ChatTemplateContentFormat,
    ) -> Result<Vec<Value>, String> {
493
494
495
496
497
498
499
500
501
502
        messages
            .iter()
            .map(|message| {
                let mut message_json = serde_json::to_value(message)
                    .map_err(|e| format!("Failed to serialize message: {}", e))?;

                if let Some(obj) = message_json.as_object_mut() {
                    if let Some(content_value) = obj.get_mut("content") {
                        Self::transform_content_field(content_value, content_format);
                    }
503
                }
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

                Ok(message_json)
            })
            .collect()
    }

    /// Transform a single content field based on content format
    fn transform_content_field(
        content_value: &mut Value,
        content_format: ChatTemplateContentFormat,
    ) {
        let Some(content_array) = content_value.as_array() else {
            return; // Not multimodal, keep as-is
        };

        match content_format {
            ChatTemplateContentFormat::String => {
                // Extract and join text parts only
                let text_parts: Vec<String> = content_array
                    .iter()
                    .filter_map(|part| {
                        part.as_object()?
                            .get("type")?
                            .as_str()
                            .filter(|&t| t == "text")
                            .and_then(|_| part.as_object()?.get("text")?.as_str())
                            .map(String::from)
                    })
                    .collect();

                if !text_parts.is_empty() {
                    *content_value = Value::String(text_parts.join(" "));
536
                }
537
538
539
540
541
542
543
544
545
            }
            ChatTemplateContentFormat::OpenAI => {
                // Replace media URLs with simple type placeholders
                let processed_parts: Vec<Value> = content_array
                    .iter()
                    .map(|part| {
                        part.as_object()
                            .and_then(|obj| obj.get("type")?.as_str())
                            .and_then(|type_str| match type_str {
546
547
548
                                "image_url" => Some(json!({"type": "image"})),
                                "video_url" => Some(json!({"type": "video"})),
                                "audio_url" => Some(json!({"type": "audio"})),
549
550
551
552
553
                                _ => None,
                            })
                            .unwrap_or_else(|| part.clone())
                    })
                    .collect();
554

555
556
557
                *content_value = Value::Array(processed_parts);
            }
        }
558
559
    }

560
561
    /// Process tool call arguments in messages
    /// Per Transformers docs, tool call arguments in assistant messages should be dicts
562
    fn process_tool_call_arguments(messages: &mut [Value]) -> Result<(), String> {
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
        for msg in messages {
            // Early return if not assistant message
            let role = msg.get("role").and_then(|v| v.as_str());
            if role != Some("assistant") {
                continue;
            }

            // Early return if no tool_calls
            let Some(tool_calls) = msg.get_mut("tool_calls").and_then(|tc| tc.as_array_mut())
            else {
                continue;
            };

            // Process each tool call's arguments
            for call in tool_calls {
                let Some(function) = call.get_mut("function") else {
                    continue;
                };
                let Some(args) = function.get_mut("arguments") else {
                    continue;
                };
                let Some(args_str) = args.as_str() else {
                    continue;
                };

                // Parse JSON string to object (like Python json.loads)
589
                match serde_json::from_str::<Value>(args_str) {
590
591
592
593
594
595
596
597
598
599
600
601
602
                    Ok(parsed) => *args = parsed,
                    Err(e) => {
                        return Err(format!(
                            "Failed to parse tool call arguments as JSON: '{}'. Error: {}",
                            args_str, e
                        ))
                    }
                }
            }
        }
        Ok(())
    }

603
    /// Generate tool constraints for structured generation
604
    /// Note: tools should already be filtered if needed (by allowed_tools or specific function)
605
606
    fn generate_tool_constraints(
        &self,
607
608
609
        tools: &[Tool],
        tool_choice: &Option<ToolChoice>,
        _model: &str,
610
    ) -> Option<(String, String)> {
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
        let choice = tool_choice.as_ref()?;

        match choice {
            // Specific function: Return parameters schema directly
            // tools should already be filtered to contain only the specific function
            ToolChoice::Function { .. } => {
                if tools.is_empty() {
                    return None;
                }
                let tool = &tools[0];

                // Return the tool's parameters schema directly (not wrapped in array)
                let params_schema = serde_json::to_string(&tool.function.parameters).ok()?;
                Some(("json_schema".to_string(), params_schema))
            }

            // Required: Array of tool calls with minItems: 1
            ToolChoice::Value(ToolChoiceValue::Required) => {
                let schema = self.build_required_array_schema(tools)?;
                Some(("json_schema".to_string(), schema))
            }

            // AllowedTools with required mode: tools are already filtered
            ToolChoice::AllowedTools { mode, .. } => {
                if mode == "required" {
                    if tools.is_empty() {
                        return None;
                    }
                    let schema = self.build_required_array_schema(tools)?;
                    Some(("json_schema".to_string(), schema))
                } else {
                    // "auto" mode - no constraint needed
                    None
                }
            }

            // "auto" or "none" - no constraint
            _ => None,
        }
    }

    /// Build JSON schema for required tool calls (array with minItems: 1)
    /// Includes $defs consolidation from all tools (matching Python's behavior)
    fn build_required_array_schema(&self, tools: &[Tool]) -> Option<String> {
        // Build anyOf schemas for each tool
        let mut any_of_schemas = Vec::new();
        for tool in tools {
            let tool_schema = json!({
                "properties": {
                    "name": {
                        "type": "string",
                        "enum": [tool.function.name]
                    },
                    "parameters": tool.function.parameters
                },
                "required": ["name", "parameters"]
            });
            any_of_schemas.push(tool_schema);
        }

        // Consolidate $defs from all tools (matching Python's _get_tool_schema_defs)
        let mut all_defs: HashMap<String, Value> = HashMap::new();
        for tool in tools {
            if let Value::Object(params) = &tool.function.parameters {
                if let Some(Value::Object(defs)) = params.get("$defs") {
                    for (def_name, def_schema) in defs {
                        if let Some(existing) = all_defs.get(def_name) {
                            // Check for conflicts
                            if existing != def_schema {
                                error!(
                                    "Tool definition '{}' has multiple schemas, which is not supported",
                                    def_name
                                );
                                return None;
                            }
                        } else {
                            all_defs.insert(def_name.clone(), def_schema.clone());
                        }
                    }
                }
            }
        }

        // Build the full array schema
        let mut array_schema = json!({
            "type": "array",
            "minItems": 1,
            "items": {
                "type": "object",
                "anyOf": any_of_schemas
            }
        });

        // Add $defs if any were found (matching Python's behavior)
        if !all_defs.is_empty() {
            if let Value::Object(ref mut schema_obj) = array_schema {
                let defs_value =
                    Value::Object(all_defs.into_iter().collect::<Map<String, Value>>());
                schema_obj.insert("$defs".to_string(), defs_value);
            }
        }

        serde_json::to_string(&array_schema).ok()
    }

    /// Parse tool calls from JSON schema constrained response
    fn parse_json_schema_response(
        &self,
        processed_text: &str,
        tool_choice: &Option<ToolChoice>,
    ) -> (Option<Vec<ToolCall>>, String) {
        match tool_choice {
            Some(ToolChoice::Function { function, .. }) => {
                // Specific function: Parse parameters directly
                match serde_json::from_str::<Value>(processed_text) {
                    Ok(params) => {
                        let tool_call = ToolCall {
                            id: format!("call_{}", uuid::Uuid::new_v4()),
                            tool_type: "function".to_string(),
                            function: FunctionCallResponse {
                                name: function.name.clone(),
                                arguments: Some(
                                    serde_json::to_string(&params)
                                        .unwrap_or_else(|_| "{}".to_string()),
                                ),
                            },
                        };
                        (Some(vec![tool_call]), String::new())
                    }
                    Err(e) => {
                        error!("Failed to parse specific function parameters: {}", e);
                        (None, processed_text.to_string())
                    }
                }
            }
            Some(ToolChoice::Value(ToolChoiceValue::Required))
            | Some(ToolChoice::AllowedTools { .. }) => {
                // Required mode: Parse array of tool calls
                match serde_json::from_str::<Vec<Value>>(processed_text) {
                    Ok(parsed_array) => {
                        let spec_tool_calls: Vec<ToolCall> = parsed_array
                            .into_iter()
                            .enumerate()
                            .filter_map(|(i, item)| {
                                let obj = item.as_object()?;
                                let name = obj.get("name")?.as_str()?.to_string();
                                let parameters = obj.get("parameters")?;

                                Some(ToolCall {
                                    id: format!("call_{}_{}", i, uuid::Uuid::new_v4()),
                                    tool_type: "function".to_string(),
                                    function: FunctionCallResponse {
                                        name,
                                        arguments: Some(
                                            serde_json::to_string(parameters)
                                                .unwrap_or_else(|_| "{}".to_string()),
                                        ),
                                    },
                                })
                            })
                            .collect();
                        (Some(spec_tool_calls), String::new())
                    }
                    Err(e) => {
                        error!("Failed to parse required tool call array: {}", e);
                        (None, processed_text.to_string())
                    }
                }
            }
            _ => (None, processed_text.to_string()),
        }
    }

    /// Parse tool calls using model-specific parser
785
    async fn parse_tool_calls(
786
787
788
        &self,
        processed_text: &str,
        model: &str,
789
        history_tool_calls_count: usize,
790
    ) -> (Option<Vec<ToolCall>>, String) {
791
792
793
794
795
796
797
798
        // Get pooled parser for this model
        let pooled_parser = self.tool_parser_factory.get_pooled(model);

        // Check format detection first
        let can_parse = {
            let parser = pooled_parser.lock().await;
            parser.detect_format(processed_text)
            // Lock is dropped here
799
800
        };

801
        if !can_parse {
802
803
804
            return (None, processed_text.to_string());
        }

805
806
807
808
809
810
811
812
        // Lock again for async parsing
        let result = {
            let parser = pooled_parser.lock().await;
            parser.parse_complete(processed_text).await
            // Lock is dropped here
        };

        match result {
813
814
815
816
817
818
819
            Ok((normal_text, parsed_tool_calls)) => {
                if parsed_tool_calls.is_empty() {
                    return (None, normal_text);
                }

                let spec_tool_calls = parsed_tool_calls
                    .into_iter()
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
                    .enumerate()
                    .map(|(index, tc)| {
                        // Generate ID for this tool call
                        let id = Self::generate_tool_call_id(
                            model,
                            &tc.function.name,
                            index,
                            history_tool_calls_count,
                        );
                        ToolCall {
                            id,
                            tool_type: "function".to_string(),
                            function: FunctionCallResponse {
                                name: tc.function.name,
                                arguments: Some(
                                    serde_json::to_string(&tc.function.arguments)
                                        .unwrap_or_else(|_| "{}".to_string()),
                                ),
                            },
                        }
840
841
842
843
844
845
846
847
848
                    })
                    .collect();
                (Some(spec_tool_calls), normal_text)
            }
            Err(e) => {
                error!("Tool call parsing error: {}", e);
                (None, processed_text.to_string())
            }
        }
849
850
    }

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    /// Resolve the generate input into optional original text and token IDs
    fn resolve_generate_input(
        &self,
        request: &GenerateRequest,
    ) -> Result<(Option<String>, Vec<u32>), String> {
        if let Some(text) = &request.text {
            return self
                .tokenize_single_text(text)
                .map(|(original, ids)| (Some(original), ids));
        }

        // Handle input_ids - validate and convert
        if let Some(input_ids) = &request.input_ids {
            return match input_ids {
                crate::protocols::spec::InputIds::Single(ids) => ids
                    .iter()
                    .map(|&id| u32::try_from(id))
                    .collect::<Result<Vec<u32>, _>>()
                    .map(|converted| (None, converted))
                    .map_err(|_| "input_ids must be non-negative".to_string()),
                crate::protocols::spec::InputIds::Batch(_) => {
                    Err("Batch input_ids are not supported over gRPC generate yet".to_string())
                }
            };
        }

        Err("Either `text` or `input_ids` must be provided".to_string())
    }

    fn tokenize_single_text(&self, text: &str) -> Result<(String, Vec<u32>), String> {
        let encoding = self
            .tokenizer
            .encode(text)
            .map_err(|e| format!("Tokenization failed: {}", e))?;
        Ok((text.to_string(), encoding.token_ids().to_vec()))
    }

    fn internal_error_static(msg: &'static str) -> Response {
        error!("{}", msg);
        (StatusCode::INTERNAL_SERVER_ERROR, msg).into_response()
    }

    fn internal_error_message(message: String) -> Response {
        error!("{}", message);
        (StatusCode::INTERNAL_SERVER_ERROR, message).into_response()
    }

    /// Create a StopSequenceDecoder from stop parameters
899
900
    fn create_stop_decoder(
        &self,
901
902
903
904
905
906
907
        stop: Option<&StringOrArray>,
        stop_token_ids: Option<&Vec<u32>>,
        skip_special_tokens: bool,
        no_stop_trim: bool,
    ) -> StopSequenceDecoder {
        // Extract stop sequences
        let stop_sequences: Vec<String> = match stop {
908
909
910
911
912
913
914
            Some(StringOrArray::String(s)) => vec![s.clone()],
            Some(StringOrArray::Array(arr)) => arr.clone(),
            None => vec![],
        };

        // Build stop sequence decoder
        let mut builder = StopSequenceDecoderBuilder::new(self.tokenizer.clone())
915
            .skip_special_tokens(skip_special_tokens);
916
917
918

        // Add stop sequences (visible if no_stop_trim is true, hidden otherwise)
        for seq in stop_sequences {
919
            builder = if no_stop_trim {
920
921
922
923
924
925
926
                builder.visible_stop_sequence(seq)
            } else {
                builder.stop_sequence(seq)
            };
        }

        // Add stop token IDs (visible if no_stop_trim is true, hidden otherwise)
927
928
929
        if let Some(token_ids) = stop_token_ids {
            for &token_id in token_ids {
                builder = if no_stop_trim {
930
931
932
933
934
935
936
937
938
939
                    builder.visible_stop_token(token_id)
                } else {
                    builder.stop_token(token_id)
                };
            }
        }

        builder.build()
    }

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
    /// Count the number of tool calls in the request message history
    /// This is used for KimiK2 format which needs globally unique indices
    fn get_history_tool_calls_count(request: &ChatCompletionRequest) -> usize {
        request
            .messages
            .iter()
            .filter_map(|msg| {
                if let ChatMessage::Assistant { tool_calls, .. } = msg {
                    tool_calls.as_ref().map(|calls| calls.len())
                } else {
                    None
                }
            })
            .sum()
    }

    /// Generate a tool call ID based on model format
    ///
    /// # Arguments
    /// * `model` - Model name to determine ID format
    /// * `tool_name` - Name of the tool being called
    /// * `tool_index` - Index of this tool call within the current message
    /// * `history_count` - Number of tool calls in previous messages
    ///
    /// # Returns
    /// A unique ID string. KimiK2 uses `functions.{name}:{global_index}`, others use `call_{uuid}`
    fn generate_tool_call_id(
        model: &str,
        tool_name: &str,
        tool_index: usize,
        history_count: usize,
    ) -> String {
        if model.to_lowercase().contains("kimi") {
            // KimiK2 format: functions.{name}:{global_index}
            format!("functions.{}:{}", tool_name, history_count + tool_index)
        } else {
            // Standard OpenAI format: call_{24-char-uuid}
            format!("call_{}", &Uuid::new_v4().simple().to_string()[..24])
        }
    }

981
982
    /// Process a chunk of tokens through the stop decoder
    fn process_chunk_tokens(
983
        stop_decoder: &mut StopSequenceDecoder,
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        token_ids: &[u32],
    ) -> (String, bool) {
        let mut chunk_text = String::new();

        for &token_id in token_ids {
            match stop_decoder.process_token(token_id).unwrap_or_else(|e| {
                debug!(
                    "Error processing token {}: {}. Treating as Held.",
                    token_id, e
                );
                SequenceDecoderOutput::Held
            }) {
                SequenceDecoderOutput::Text(text) => {
                    chunk_text.push_str(&text);
                }
                SequenceDecoderOutput::StoppedWithText(text) => {
                    chunk_text.push_str(&text);
                    return (chunk_text, true); // Return text and signal to stop
                }
                SequenceDecoderOutput::Stopped => {
                    return (chunk_text, true); // Return text and signal to stop
                }
                SequenceDecoderOutput::Held => {
                    // Text held for potential stop sequence match
                }
            }
        }
        (chunk_text, false) // Return text and continue processing
    }

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
    /// Helper: Process reasoning content in streaming mode
    /// Returns (modified_delta, optional_reasoning_chunk)
    fn process_reasoning_stream(
        &self,
        delta: &str,
        index: u32,
        reasoning_parsers: &mut HashMap<
            u32,
            Arc<std::sync::Mutex<Box<dyn crate::reasoning_parser::ReasoningParser>>>,
        >,
        request_id: &str,
        model: &str,
        created: u64,
    ) -> (String, Option<ChatCompletionStreamResponse>) {
        // Get or create parser for this index
        reasoning_parsers
            .entry(index)
            .or_insert_with(|| self.reasoning_parser_factory.get_pooled(model));

        if let Some(pooled_parser) = reasoning_parsers.get(&index) {
            let parse_result = {
                let mut parser = pooled_parser.lock().unwrap();
                parser.parse_reasoning_streaming_incremental(delta)
            };

            match parse_result {
                Ok(ParserResult {
                    reasoning_text,
                    normal_text,
                }) => {
                    let chunk = if !reasoning_text.is_empty() {
                        Some(ChatCompletionStreamResponse {
                            id: request_id.to_string(),
                            object: "chat.completion.chunk".to_string(),
                            created,
                            model: model.to_string(),
                            system_fingerprint: None,
                            choices: vec![ChatStreamChoice {
                                index,
                                delta: ChatMessageDelta {
                                    role: Some("assistant".to_string()),
                                    content: None,
                                    tool_calls: None,
                                    reasoning_content: Some(reasoning_text),
                                },
                                logprobs: None,
                                finish_reason: None,
                                matched_stop: None,
                            }],
                            usage: None,
                        })
                    } else {
                        None
                    };
                    return (normal_text, chunk);
                }
                Err(e) => {
                    warn!("Reasoning parsing error: {}", e);
                }
            }
        }

        (delta.to_string(), None)
    }

    /// Helper: Process tool calls in streaming mode
    /// Returns (should_skip_content, chunks_to_emit)
    #[allow(clippy::too_many_arguments)]
    async fn process_tool_calls_stream(
        &self,
        delta: &str,
        index: u32,
        tool_parsers: &mut HashMap<
            u32,
            Arc<tokio::sync::Mutex<Box<dyn crate::tool_parser::ToolParser>>>,
        >,
        has_tool_calls: &mut HashMap<u32, bool>,
        tools: &[crate::protocols::spec::Tool],
        request_id: &str,
        model: &str,
        created: u64,
        history_tool_calls_count: usize,
    ) -> (bool, Vec<ChatCompletionStreamResponse>) {
        let mut chunks = Vec::new();

        // Get or create parser for this index
        tool_parsers
            .entry(index)
            .or_insert_with(|| self.tool_parser_factory.get_pooled(model));

        if let Some(pooled_parser) = tool_parsers.get(&index) {
            let mut parser = pooled_parser.lock().await;
            match parser.parse_incremental(delta, tools).await {
                Ok(StreamingParseResult { normal_text, calls }) => {
                    // Emit normal text if present
                    if !normal_text.is_empty() {
                        chunks.push(ChatCompletionStreamResponse {
                            id: request_id.to_string(),
                            object: "chat.completion.chunk".to_string(),
                            created,
                            model: model.to_string(),
                            system_fingerprint: None,
                            choices: vec![ChatStreamChoice {
                                index,
                                delta: ChatMessageDelta {
                                    role: Some("assistant".to_string()),
                                    content: Some(normal_text),
                                    tool_calls: None,
                                    reasoning_content: None,
                                },
                                logprobs: None,
                                finish_reason: None,
                                matched_stop: None,
                            }],
                            usage: None,
                        });
                    }

                    // Emit tool call chunks
                    for tool_call_item in calls {
                        has_tool_calls.insert(index, true);

                        let tool_call_id = if let Some(ref name) = tool_call_item.name {
                            Some(Self::generate_tool_call_id(
                                model,
                                name,
                                tool_call_item.tool_index,
                                history_tool_calls_count,
                            ))
                        } else {
                            None
                        };

                        let tool_call_delta = ToolCallDelta {
                            index: tool_call_item.tool_index as u32,
                            id: tool_call_id,
                            tool_type: if tool_call_item.name.is_some() {
                                Some("function".to_string())
                            } else {
                                None
                            },
                            function: Some(FunctionCallDelta {
                                name: tool_call_item.name,
                                arguments: if !tool_call_item.parameters.is_empty() {
                                    Some(tool_call_item.parameters)
                                } else {
                                    None
                                },
                            }),
                        };

                        chunks.push(ChatCompletionStreamResponse {
                            id: request_id.to_string(),
                            object: "chat.completion.chunk".to_string(),
                            created,
                            model: model.to_string(),
                            system_fingerprint: None,
                            choices: vec![ChatStreamChoice {
                                index,
                                delta: ChatMessageDelta {
                                    role: Some("assistant".to_string()),
                                    content: None,
                                    tool_calls: Some(vec![tool_call_delta]),
                                    reasoning_content: None,
                                },
                                logprobs: None,
                                finish_reason: None,
                                matched_stop: None,
                            }],
                            usage: None,
                        });
                    }

                    // If we emitted chunks, skip regular content
                    return (!chunks.is_empty(), chunks);
                }
                Err(e) => {
                    warn!("Tool call parsing error: {}", e);
                }
            }
        }

        (false, chunks)
    }

    /// Helper: Create content chunk
    fn create_content_chunk(
        content: String,
        index: u32,
        request_id: &str,
        model: &str,
        created: u64,
        logprobs: Option<crate::protocols::spec::ChatLogProbs>,
    ) -> ChatCompletionStreamResponse {
        ChatCompletionStreamResponse {
            id: request_id.to_string(),
            object: "chat.completion.chunk".to_string(),
            created,
            model: model.to_string(),
            system_fingerprint: None,
            choices: vec![ChatStreamChoice {
                index,
                delta: ChatMessageDelta {
                    role: Some("assistant".to_string()),
                    content: Some(content),
                    tool_calls: None,
                    reasoning_content: None,
                },
                logprobs,
                finish_reason: None,
                matched_stop: None,
            }],
            usage: None,
        }
    }

    /// Helper: Format response as SSE chunk
    fn format_sse_chunk(response: &ChatCompletionStreamResponse) -> String {
        format!(
            "data: {}\n\n",
            serde_json::to_string(response).unwrap_or_default()
        )
    }

1238
    /// Submit request and handle streaming response for chat completions route
1239
1240
    async fn handle_streaming_chat(
        &self,
1241
1242
1243
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &ChatCompletionRequest,
1244
    ) -> Response {
1245
1246
1247
1248
1249
        let request_id = request.request_id.clone();
        let model = original_request.model.clone();

        // Create channel for SSE streaming
        let (tx, rx) = mpsc::unbounded_channel::<Result<Bytes, io::Error>>();
1250

1251
        // Start the gRPC stream
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
        let mut grpc_stream = match client.generate(request).await {
            Ok(stream) => stream,
            Err(e) => {
                error!("Failed to start generation: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Generation failed: {}", e),
                )
                    .into_response();
            }
        };

1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
        let stop_params = (
            original_request.stop.clone(),
            original_request.stop_token_ids.clone(),
            original_request.skip_special_tokens,
            original_request.no_stop_trim,
        );

        // Spawn processing task
        let self_clone = self.clone();
        let original_request_clone = original_request.clone();
        tokio::spawn(async move {
            let result = Self::process_streaming_chunks(
                &self_clone,
                &mut grpc_stream,
                request_id,
                model,
                stop_params,
                original_request_clone,
                &tx,
            )
            .await;

            if let Err(e) = result {
                let error_chunk = format!(
                    "data: {}\n\n",
                    json!({
                        "error": {
                            "message": e,
                            "type": "internal_error"
                        }
                    })
                );
                let _ = tx.send(Ok(Bytes::from(error_chunk)));
            }

            // Send DONE marker
            let _ = tx.send(Ok(Bytes::from("data: [DONE]\n\n")));
        });

        // Create response with SSE headers
        let stream = UnboundedReceiverStream::new(rx);
        let mut response = Response::new(Body::from_stream(stream));
        *response.status_mut() = StatusCode::OK;
        response
            .headers_mut()
            .insert(CONTENT_TYPE, HeaderValue::from_static("text/event-stream"));
        response
            .headers_mut()
            .insert("Cache-Control", HeaderValue::from_static("no-cache"));
        response
            .headers_mut()
            .insert("Connection", HeaderValue::from_static("keep-alive"));
        response
    }

    /// Process streaming chunks and send SSE events
    async fn process_streaming_chunks(
        router: &GrpcRouter,
        grpc_stream: &mut (impl tokio_stream::Stream<Item = Result<proto::GenerateResponse, tonic::Status>>
                  + Unpin),
        request_id: String,
        model: String,
        stop_params: (Option<StringOrArray>, Option<Vec<u32>>, bool, bool),
        original_request: ChatCompletionRequest,
        tx: &mpsc::UnboundedSender<Result<Bytes, io::Error>>,
    ) -> Result<(), String> {
        // Extract request parameters
        let separate_reasoning = original_request.separate_reasoning;
        let tool_choice = &original_request.tool_choice;
        let tools = &original_request.tools;
        let history_tool_calls_count = Self::get_history_tool_calls_count(&original_request);
        let stream_options = &original_request.stream_options;

        // Phase 1: Initialize state tracking (per-index for n>1 support)
        let mut is_firsts: HashMap<u32, bool> = HashMap::new();
        let mut stream_buffers: HashMap<u32, String> = HashMap::new();
        let mut finish_reasons: HashMap<u32, String> = HashMap::new();
        let mut matched_stops: HashMap<u32, Option<Value>> = HashMap::new();
        let mut prompt_tokens: HashMap<u32, u32> = HashMap::new();
        let mut completion_tokens: HashMap<u32, u32> = HashMap::new();
        let mut cached_tokens: HashMap<u32, u32> = HashMap::new();

        // Parser state (lazy initialization per index)
        type PooledReasoningParser =
            Arc<std::sync::Mutex<Box<dyn crate::reasoning_parser::ReasoningParser>>>;
        let mut reasoning_parsers: HashMap<u32, PooledReasoningParser> = HashMap::new();

        type PooledToolParser = Arc<tokio::sync::Mutex<Box<dyn crate::tool_parser::ToolParser>>>;
        let mut tool_parsers: HashMap<u32, PooledToolParser> = HashMap::new();
        let mut has_tool_calls: HashMap<u32, bool> = HashMap::new();

        // Create stop decoder
        let (stop, stop_token_ids, skip_special_tokens, no_stop_trim) = stop_params;
        let mut stop_decoder = router.create_stop_decoder(
            stop.as_ref(),
            stop_token_ids.as_ref(),
            skip_special_tokens,
            no_stop_trim,
        );

        let created = SystemTime::now()
            .duration_since(UNIX_EPOCH)
            .unwrap_or_default()
            .as_secs();
1368

1369
        // Phase 2: Main streaming loop
1370
        while let Some(response) = grpc_stream.next().await {
1371
            let gen_response = response.map_err(|e| format!("Stream error: {}", e))?;
1372
1373

            match gen_response.response {
1374
                Some(Chunk(chunk)) => {
1375
1376
1377
1378
                    let index = chunk.index;

                    // Process tokens through stop decoder
                    let (chunk_text, _should_stop) =
1379
                        Self::process_chunk_tokens(&mut stop_decoder, &chunk.token_ids);
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489

                    if chunk_text.is_empty() {
                        continue;
                    }

                    // Process logprobs if present
                    let choice_logprobs = if let Some(ref proto_logprobs) = chunk.output_logprobs {
                        match router.convert_proto_to_openai_logprobs(proto_logprobs) {
                            Ok(logprobs) => Some(logprobs),
                            Err(e) => {
                                warn!("Failed to process logprobs: {}", e);
                                None
                            }
                        }
                    } else {
                        None
                    };

                    // Initialize stream buffer if first time
                    let stream_buffer = stream_buffers.entry(index).or_default();

                    // Send first chunk with role
                    if is_firsts.get(&index).copied().unwrap_or(true) {
                        let first_chunk = ChatCompletionStreamResponse {
                            id: request_id.clone(),
                            object: "chat.completion.chunk".to_string(),
                            created,
                            model: model.clone(),
                            system_fingerprint: None,
                            choices: vec![ChatStreamChoice {
                                index,
                                delta: ChatMessageDelta {
                                    role: Some("assistant".to_string()),
                                    content: None,
                                    tool_calls: None,
                                    reasoning_content: None,
                                },
                                logprobs: None,
                                finish_reason: None,
                                matched_stop: None,
                            }],
                            usage: None,
                        };
                        tx.send(Ok(Bytes::from(Self::format_sse_chunk(&first_chunk))))
                            .map_err(|_| "Failed to send first chunk".to_string())?;
                        is_firsts.insert(index, false);
                    }

                    // Calculate delta
                    let mut delta = chunk_text;
                    stream_buffer.push_str(&delta);

                    // Reasoning content handling
                    if separate_reasoning {
                        let (normal_text, reasoning_chunk) = router.process_reasoning_stream(
                            &delta,
                            index,
                            &mut reasoning_parsers,
                            &request_id,
                            &model,
                            created,
                        );
                        if let Some(chunk) = reasoning_chunk {
                            tx.send(Ok(Bytes::from(Self::format_sse_chunk(&chunk))))
                                .map_err(|_| "Failed to send reasoning chunk".to_string())?;
                        }
                        delta = normal_text;
                    }

                    // Tool call handling
                    let tool_choice_enabled =
                        !matches!(tool_choice, Some(ToolChoice::Value(ToolChoiceValue::None)));

                    if tool_choice_enabled && tools.is_some() {
                        let (should_skip, tool_chunks) = router
                            .process_tool_calls_stream(
                                &delta,
                                index,
                                &mut tool_parsers,
                                &mut has_tool_calls,
                                tools.as_ref().unwrap(),
                                &request_id,
                                &model,
                                created,
                                history_tool_calls_count,
                            )
                            .await;

                        for chunk in tool_chunks {
                            tx.send(Ok(Bytes::from(Self::format_sse_chunk(&chunk))))
                                .map_err(|_| "Failed to send tool call chunk".to_string())?;
                        }

                        if should_skip {
                            continue;
                        }
                    }

                    // Regular content emission
                    if !delta.is_empty() {
                        let content_chunk = Self::create_content_chunk(
                            delta,
                            index,
                            &request_id,
                            &model,
                            created,
                            choice_logprobs,
                        );
                        tx.send(Ok(Bytes::from(Self::format_sse_chunk(&content_chunk))))
                            .map_err(|_| "Failed to send content chunk".to_string())?;
1490
1491
                    }
                }
1492
                Some(Complete(complete)) => {
1493
1494
1495
                    // Flush any remaining text
                    if let SequenceDecoderOutput::Text(text) = stop_decoder.flush() {
                        if !text.is_empty() {
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
                            let index = complete.index;
                            let stream_buffer = stream_buffers.entry(index).or_default();
                            stream_buffer.push_str(&text);

                            let content_chunk = ChatCompletionStreamResponse {
                                id: request_id.clone(),
                                object: "chat.completion.chunk".to_string(),
                                created,
                                model: model.clone(),
                                system_fingerprint: None,
                                choices: vec![ChatStreamChoice {
                                    index,
                                    delta: ChatMessageDelta {
                                        role: Some("assistant".to_string()),
                                        content: Some(text),
                                        tool_calls: None,
                                        reasoning_content: None,
                                    },
                                    logprobs: None,
                                    finish_reason: None,
                                    matched_stop: None,
                                }],
                                usage: None,
                            };

                            let sse_chunk = serde_json::to_string(&content_chunk)
                                .map_err(|e| format!("Failed to serialize content chunk: {}", e))?;
                            tx.send(Ok(Bytes::from(format!("data: {}\n\n", sse_chunk))))
                                .map_err(|_| "Failed to send flushed content".to_string())?;
1525
1526
                        }
                    }
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546

                    // Store metadata
                    let index = complete.index;
                    prompt_tokens.insert(index, complete.prompt_tokens as u32);
                    completion_tokens.insert(index, complete.completion_tokens as u32);
                    cached_tokens.insert(index, complete.cached_tokens as u32);
                    finish_reasons.insert(index, complete.finish_reason.clone());

                    // Extract matched_stop
                    let matched_stop_value = match &complete.matched_stop {
                        Some(proto::generate_complete::MatchedStop::MatchedTokenId(token_id)) => {
                            Some(Value::Number(serde_json::Number::from(*token_id)))
                        }
                        Some(proto::generate_complete::MatchedStop::MatchedStopStr(stop_str)) => {
                            Some(Value::String(stop_str.clone()))
                        }
                        None => None,
                    };
                    matched_stops.insert(index, matched_stop_value);

1547
1548
                    break;
                }
1549
                Some(Error(error)) => {
1550
                    return Err(error.message);
1551
1552
1553
1554
1555
                }
                None => continue,
            }
        }

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
        // Phase 3: Check unstreamed tool args
        // Check if parsers have any remaining arguments that haven't been streamed yet
        for (index, parser) in &tool_parsers {
            let parser_guard = parser.lock().await;
            if let Some(unstreamed_items) = parser_guard.get_unstreamed_tool_args() {
                for tool_call_item in unstreamed_items {
                    let tool_call_delta = ToolCallDelta {
                        index: tool_call_item.tool_index as u32,
                        id: None,
                        tool_type: None, // No type for argument deltas
                        function: Some(FunctionCallDelta {
                            name: None, // No name for argument deltas
                            arguments: if !tool_call_item.parameters.is_empty() {
                                Some(tool_call_item.parameters)
                            } else {
                                None
                            },
                        }),
                    };

                    let tool_chunk = ChatCompletionStreamResponse {
                        id: request_id.clone(),
                        object: "chat.completion.chunk".to_string(),
                        created,
                        model: model.clone(),
                        system_fingerprint: None,
                        choices: vec![ChatStreamChoice {
                            index: *index,
                            delta: ChatMessageDelta {
                                role: Some("assistant".to_string()),
                                content: None,
                                tool_calls: Some(vec![tool_call_delta]),
                                reasoning_content: None,
                            },
                            logprobs: None,
                            finish_reason: None,
                            matched_stop: None,
                        }],
                        usage: None,
                    };

                    let sse_chunk = serde_json::to_string(&tool_chunk)
                        .map_err(|e| format!("Failed to serialize tool chunk: {}", e))?;
                    tx.send(Ok(Bytes::from(format!("data: {}\n\n", sse_chunk))))
                        .map_err(|_| "Failed to send unstreamed tool args".to_string())?;
                }
            }
        }

        // Phase 4: Finish reason chunks
        for (index, finish_reason) in finish_reasons.iter() {
            let final_finish_reason =
                if has_tool_calls.get(index).copied().unwrap_or(false) && finish_reason == "stop" {
                    "tool_calls".to_string()
                } else {
                    finish_reason.clone()
                };

            let matched_stop_value = matched_stops.get(index).and_then(|v| v.clone());

            let finish_chunk = ChatCompletionStreamResponse {
                id: request_id.clone(),
                object: "chat.completion.chunk".to_string(),
                created,
                model: model.clone(),
                system_fingerprint: None,
                choices: vec![ChatStreamChoice {
                    index: *index,
                    delta: ChatMessageDelta {
                        role: Some("assistant".to_string()),
                        content: None,
                        tool_calls: None,
                        reasoning_content: None,
                    },
                    logprobs: None,
                    finish_reason: Some(final_finish_reason),
                    matched_stop: matched_stop_value,
                }],
                usage: None,
            };

            let sse_chunk = serde_json::to_string(&finish_chunk)
                .map_err(|e| format!("Failed to serialize finish chunk: {}", e))?;
            tx.send(Ok(Bytes::from(format!("data: {}\n\n", sse_chunk))))
                .map_err(|_| "Failed to send finish chunk".to_string())?;
        }

        // Phase 5: Usage chunk
        if let Some(stream_opts) = stream_options {
            if stream_opts.include_usage.unwrap_or(false) {
                let total_prompt: u32 = prompt_tokens.values().sum();
                let total_completion: u32 = completion_tokens.values().sum();

                let usage_chunk = ChatCompletionStreamResponse {
                    id: request_id.clone(),
                    object: "chat.completion.chunk".to_string(),
                    created,
                    model: model.clone(),
                    system_fingerprint: None,
                    choices: vec![],
                    usage: Some(Usage {
                        prompt_tokens: total_prompt,
                        completion_tokens: total_completion,
                        total_tokens: total_prompt + total_completion,
                        completion_tokens_details: None,
                    }),
                };

                let sse_chunk = serde_json::to_string(&usage_chunk)
                    .map_err(|e| format!("Failed to serialize usage chunk: {}", e))?;
                tx.send(Ok(Bytes::from(format!("data: {}\n\n", sse_chunk))))
                    .map_err(|_| "Failed to send usage chunk".to_string())?;
            }
        }

        Ok(())
1672
1673
    }

1674
    /// Submit request and handle non-streaming response for chat completions route
1675
1676
    async fn handle_non_streaming_chat(
        &self,
1677
1678
1679
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &ChatCompletionRequest,
1680
    ) -> Response {
1681
1682
1683
1684
1685
1686
        let mut stop_decoder = self.create_stop_decoder(
            original_request.stop.as_ref(),
            original_request.stop_token_ids.as_ref(),
            original_request.skip_special_tokens,
            original_request.no_stop_trim,
        );
1687
1688
1689
1690

        // Start generation
        let mut stream = match client.generate(request).await {
            Ok(s) => s,
1691
1692
1693
            Err(e) => {
                return Self::internal_error_message(format!("Failed to start generation: {}", e))
            }
1694
1695
        };

1696
1697
1698
1699
1700
        // Collect all responses (for n>1 support)
        let mut all_responses = Vec::new();
        while let Some(response) = stream.next().await {
            match response {
                Ok(gen_response) => match gen_response.response {
1701
                    Some(Complete(complete)) => {
1702
1703
                        all_responses.push(complete);
                    }
1704
1705
1706
1707
1708
                    Some(Error(err)) => {
                        return Self::internal_error_message(format!(
                            "Generation failed: {}",
                            err.message
                        ));
1709
                    }
1710
1711
1712
1713
                    Some(Chunk(_)) => {
                        return Self::internal_error_static(
                            "Unexpected chunk response for non-streaming request",
                        )
1714
                    }
1715
                    None => return Self::internal_error_static("Empty response from server"),
1716
                },
1717
1718
1719
1720
1721
1722
                Err(e) => {
                    return Self::internal_error_message(format!(
                        "Failed to get GenerateResponse: {}",
                        e
                    ))
                }
1723
            }
1724
1725
1726
        }

        if all_responses.is_empty() {
1727
            return Self::internal_error_static("No responses from server");
1728
1729
1730
        }

        // Process each response into a ChatChoice
1731
        let history_tool_calls_count = Self::get_history_tool_calls_count(original_request);
1732
1733
1734
        let mut choices = Vec::new();
        for (index, complete) in all_responses.iter().enumerate() {
            match self
1735
1736
1737
1738
1739
1740
1741
                .process_single_choice(
                    complete,
                    index,
                    original_request,
                    &mut stop_decoder,
                    history_tool_calls_count,
                )
1742
1743
1744
1745
                .await
            {
                Ok(choice) => choices.push(choice),
                Err(e) => {
1746
1747
1748
1749
                    return Self::internal_error_message(format!(
                        "Failed to process choice {}: {}",
                        index, e
                    ));
1750
                }
1751
            }
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
        }

        // Aggregate usage information from all responses
        let total_prompt_tokens: u32 = all_responses.iter().map(|r| r.prompt_tokens as u32).sum();
        let total_completion_tokens: u32 = all_responses
            .iter()
            .map(|r| r.completion_tokens as u32)
            .sum();
        let usage = Usage {
            prompt_tokens: total_prompt_tokens,
            completion_tokens: total_completion_tokens,
            total_tokens: total_prompt_tokens + total_completion_tokens,
            completion_tokens_details: None,
1765
1766
        };

1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
        // Build final ChatCompletionResponse
        let response = ChatCompletionResponse {
            id: format!("chatcmpl-{}", Uuid::new_v4()),
            object: "chat.completion".to_string(),
            created: SystemTime::now()
                .duration_since(UNIX_EPOCH)
                .unwrap_or_default()
                .as_secs(),
            model: original_request.model.clone(),
            choices,
            usage: Some(usage),
            system_fingerprint: None,
1779
1780
        };

1781
1782
1783
1784
        // Serialize and return JSON response
        Json(response).into_response()
    }

1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
    /// Submit request and handle non-streaming response for the `/generate` endpoint
    async fn handle_non_streaming_generate(
        &self,
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &GenerateRequest,
        request_id: String,
        weight_version: String,
    ) -> Response {
        let start_time = Instant::now();

        let mut stream = match client.generate(request).await {
            Ok(stream) => stream,
            Err(e) => {
                return Self::internal_error_message(format!("Failed to start generation: {}", e))
            }
        };

        let mut final_completion: Option<proto::GenerateComplete> = None;

        while let Some(result) = stream.next().await {
            match result {
                Ok(gen_response) => match gen_response.response {
                    Some(Complete(complete)) => {
                        final_completion = Some(complete);
                        break;
                    }
                    Some(Error(err)) => {
                        return Self::internal_error_message(format!(
                            "Generation failed: {}",
                            err.message
                        ));
                    }
                    Some(Chunk(_)) | None => continue,
                },
                Err(e) => {
                    return Self::internal_error_message(format!(
                        "Failed to receive generate response: {}",
                        e
                    ))
                }
            }
        }

        let mut complete = match final_completion {
            Some(c) => c,
            None => {
                return Self::internal_error_static("No completion received from scheduler");
            }
        };

        // Create stop decoder from sampling params
        let params = original_request.sampling_params.as_ref();
        let mut stop_decoder = self.create_stop_decoder(
            params.and_then(|p| p.stop.as_ref()),
            params.and_then(|p| p.stop_token_ids.as_ref()),
            params.and_then(|p| p.skip_special_tokens).unwrap_or(true),
            params.and_then(|p| p.no_stop_trim).unwrap_or(false),
        );

        // Process tokens through stop decoder
        let outputs = match stop_decoder.process_tokens(&complete.output_ids) {
            Ok(outputs) => outputs,
            Err(e) => {
                return Self::internal_error_message(format!("Failed to process tokens: {}", e))
            }
        };

        // Accumulate text with early breaks
        let mut decoded_text = String::new();
        for output in outputs {
            match output {
                SequenceDecoderOutput::Text(t) => decoded_text.push_str(&t),
                SequenceDecoderOutput::StoppedWithText(t) => {
                    decoded_text.push_str(&t);
                    break;
                }
                SequenceDecoderOutput::Stopped => break,
                SequenceDecoderOutput::Held => {}
            }
        }

        // Flush remaining text
        if let SequenceDecoderOutput::Text(t) = stop_decoder.flush() {
            decoded_text.push_str(&t);
        }

1872
1873
        let output_ids = std::mem::take(&mut complete.output_ids);
        let finish_reason = std::mem::take(&mut complete.finish_reason);
1874
1875
1876

        // Build base meta_info using json! macro
        let mut meta_info = json!({
1877
            "finish_reason": finish_reason,
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
            "prompt_tokens": complete.prompt_tokens,
            "completion_tokens": complete.completion_tokens,
            "cached_tokens": complete.cached_tokens,
            "id": request_id,
            "weight_version": weight_version,
            "e2e_latency": start_time.elapsed().as_secs_f64(),
        });

        let meta_obj = meta_info.as_object_mut().unwrap();

        // Add matched_stop if present
        if let Some(matched) = complete.matched_stop.take() {
            use proto::generate_complete::MatchedStop;
            let matched_value = match matched {
                MatchedStop::MatchedTokenId(id) => json!(id),
                MatchedStop::MatchedStopStr(s) => json!(s),
            };
            meta_obj.insert("matched_stop".to_string(), matched_value);
        }

        let response_body = json!({
            "text": decoded_text,
            "output_ids": output_ids,
            "meta_info": meta_info,
        });

        Json(response_body).into_response()
    }

1907
1908
1909
1910
    /// Convert proto LogProbs to OpenAI ChatLogProbs format
    /// Note: Always decodes with skip_special_tokens=false to show actual tokens generated
    fn convert_proto_to_openai_logprobs(
        &self,
1911
        proto_logprobs: &proto::OutputLogProbs,
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
    ) -> Result<crate::protocols::spec::ChatLogProbs, String> {
        let mut content_items = Vec::new();

        // Decode token IDs to text (always with skip_special_tokens=false for logprobs)
        let token_texts: Vec<String> = proto_logprobs
            .token_ids
            .iter()
            .map(|&token_id| {
                self.tokenizer
                    .decode(&[token_id as u32], false)
                    .unwrap_or_else(|_| format!("<token_{}>", token_id))
            })
            .collect();

1926
1927
1928
1929
1930
1931
1932
        // Build ChatLogProbsContent for each token (consume iterator to avoid clones)
        for (i, (&logprob, token_text)) in proto_logprobs
            .token_logprobs
            .iter()
            .zip(token_texts.into_iter())
            .enumerate()
        {
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
            let bytes = Some(token_text.as_bytes().to_vec());

            // Build top_logprobs for this position
            let mut top_logprobs = Vec::new();
            if let Some(top_logprobs_entry) = proto_logprobs.top_logprobs.get(i) {
                // Decode top token IDs (always with skip_special_tokens=false)
                let top_token_texts: Vec<String> = top_logprobs_entry
                    .token_ids
                    .iter()
                    .map(|&tid| {
                        self.tokenizer
                            .decode(&[tid as u32], false)
                            .unwrap_or_else(|_| format!("<token_{}>", tid))
                    })
                    .collect();

                for (j, (&top_logprob, &_top_token_id)) in top_logprobs_entry
                    .values
                    .iter()
                    .zip(top_logprobs_entry.token_ids.iter())
                    .enumerate()
                {
                    if let Some(top_token_text) = top_token_texts.get(j) {
                        top_logprobs.push(crate::protocols::spec::TopLogProb {
                            token: top_token_text.clone(),
                            logprob: top_logprob,
                            bytes: Some(top_token_text.as_bytes().to_vec()),
                        });
                    }
                }
            }

            content_items.push(crate::protocols::spec::ChatLogProbsContent {
                token: token_text,
                logprob,
                bytes,
                top_logprobs,
            });
        }

        Ok(crate::protocols::spec::ChatLogProbs::Detailed {
            content: (!content_items.is_empty()).then_some(content_items),
        })
    }

1978
1979
1980
1981
1982
1983
    /// Process a single GenerateComplete response into a ChatChoice
    async fn process_single_choice(
        &self,
        complete: &proto::GenerateComplete,
        index: usize,
        original_request: &ChatCompletionRequest,
1984
        stop_decoder: &mut StopSequenceDecoder,
1985
        history_tool_calls_count: usize,
1986
1987
1988
1989
1990
1991
1992
    ) -> Result<ChatChoice, String> {
        stop_decoder.reset();
        // Decode tokens
        let outputs = stop_decoder
            .process_tokens(&complete.output_ids)
            .map_err(|e| format!("Failed to process tokens: {}", e))?;

1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
        // Accumulate text with early breaks
        let mut final_text = String::new();
        for output in outputs {
            match output {
                SequenceDecoderOutput::Text(t) => final_text.push_str(&t),
                SequenceDecoderOutput::StoppedWithText(t) => {
                    final_text.push_str(&t);
                    break;
                }
                SequenceDecoderOutput::Stopped => break,
                SequenceDecoderOutput::Held => {}
            }
        }

        // Flush remaining text
        if let SequenceDecoderOutput::Text(t) = stop_decoder.flush() {
            final_text.push_str(&t);
        }

2012
2013
2014
2015
2016
2017
        // Step 1: Handle reasoning content parsing
        let mut reasoning_text: Option<String> = None;
        let mut processed_text = final_text;

        // Check if reasoning parsing is enabled and separate_reasoning is requested
        if original_request.separate_reasoning {
2018
            let pooled_parser = self
2019
                .reasoning_parser_factory
2020
2021
2022
2023
2024
2025
2026
2027
2028
                .get_pooled(&original_request.model);

            let mut parser = pooled_parser
                .lock()
                .map_err(|e| format!("Failed to acquire reasoning parser lock: {}", e))?;
            match parser.detect_and_parse_reasoning(&processed_text) {
                Ok(result) => {
                    if !result.reasoning_text.is_empty() {
                        reasoning_text = Some(result.reasoning_text);
2029
                    }
2030
2031
2032
2033
                    processed_text = result.normal_text;
                }
                Err(e) => {
                    return Err(format!("Reasoning parsing error: {}", e));
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
                }
            }
        }

        // Step 2: Handle tool call parsing
        let mut tool_calls: Option<Vec<crate::protocols::spec::ToolCall>> = None;

        // Check if tool calls should be processed
        let tool_choice_enabled = !matches!(
            &original_request.tool_choice,
            Some(ToolChoice::Value(
                crate::protocols::spec::ToolChoiceValue::None
            ))
        );

        if tool_choice_enabled && original_request.tools.is_some() {
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
            // Check if JSON schema constraint was used (specific function or required mode)
            let used_json_schema = match &original_request.tool_choice {
                Some(ToolChoice::Function { .. }) => true,
                Some(ToolChoice::Value(crate::protocols::spec::ToolChoiceValue::Required)) => true,
                Some(ToolChoice::AllowedTools { mode, .. }) => mode == "required",
                _ => false,
            };

            if used_json_schema {
                (tool_calls, processed_text) =
                    self.parse_json_schema_response(&processed_text, &original_request.tool_choice);
            } else {
                (tool_calls, processed_text) = self
2063
2064
2065
2066
2067
                    .parse_tool_calls(
                        &processed_text,
                        &original_request.model,
                        history_tool_calls_count,
                    )
2068
                    .await;
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
            }
        }

        // Step 3: Use finish reason directly from proto (already OpenAI-compatible string)
        let finish_reason_str = &complete.finish_reason;

        // Override finish reason if we have tool calls
        let final_finish_reason_str = if tool_calls.is_some() {
            "tool_calls"
        } else {
            finish_reason_str
        };

        // Extract matched_stop information from proto
        let matched_stop = match &complete.matched_stop {
            Some(proto::generate_complete::MatchedStop::MatchedTokenId(token_id)) => Some(
                serde_json::Value::Number(serde_json::Number::from(*token_id)),
            ),
            Some(proto::generate_complete::MatchedStop::MatchedStopStr(stop_str)) => {
                Some(serde_json::Value::String(stop_str.clone()))
            }
            None => None,
        };

2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
        // Step 4: Convert output logprobs if present
        // Note: complete.input_logprobs exists in proto but is not used for chat completions
        //       (input logprobs are only used in /v1/completions endpoint with echo=true)
        let logprobs = if let Some(proto_logprobs) = &complete.output_logprobs {
            match self.convert_proto_to_openai_logprobs(proto_logprobs) {
                Ok(logprobs) => Some(logprobs),
                Err(e) => {
                    error!("Failed to convert logprobs: {}", e);
                    None
                }
            }
        } else {
            None
        };

        // Step 5: Build ChatCompletionMessage (proper response message type)
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
        let chat_message = ChatCompletionMessage {
            role: "assistant".to_string(),
            content: if processed_text.is_empty() {
                None
            } else {
                Some(processed_text)
            },
            tool_calls,
            reasoning_content: reasoning_text,
        };

2120
        // Step 6: Build ChatChoice
2121
2122
2123
        let choice = ChatChoice {
            index: index as u32,
            message: chat_message,
2124
            logprobs,
2125
2126
2127
2128
2129
2130
            finish_reason: Some(final_finish_reason_str.to_string()),
            matched_stop,
            hidden_states: None,
        };

        Ok(choice)
2131
    }
2132
2133
2134
2135
}

impl std::fmt::Debug for GrpcRouter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
2136
        let stats = self.worker_registry.stats();
2137
        f.debug_struct("GrpcRouter")
2138
            .field("workers_count", &stats.total_workers)
2139
2140
            .field("dp_aware", &self.dp_aware)
            .finish()
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
    }
}

#[async_trait]
impl RouterTrait for GrpcRouter {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    async fn health_generate(&self, _req: Request<Body>) -> Response {
2151
2152
2153
2154
2155
2156
        // TODO: Implement actual generation test for gRPC
        (
            StatusCode::NOT_IMPLEMENTED,
            "Health generate not yet implemented for gRPC",
        )
            .into_response()
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
    }

    async fn get_server_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_models(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_model_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn route_generate(
        &self,
2173
2174
2175
        headers: Option<&HeaderMap>,
        body: &GenerateRequest,
        model_id: Option<&str>,
2176
    ) -> Response {
2177
        self.route_generate_impl(headers, body, model_id).await
2178
2179
2180
2181
    }

    async fn route_chat(
        &self,
2182
        headers: Option<&HeaderMap>,
2183
        body: &ChatCompletionRequest,
2184
        model_id: Option<&str>,
2185
    ) -> Response {
2186
        self.route_chat_impl(headers, body, model_id).await
2187
2188
2189
2190
2191
    }

    async fn route_completion(
        &self,
        _headers: Option<&HeaderMap>,
2192
        _body: &CompletionRequest,
2193
        _model_id: Option<&str>,
2194
2195
2196
2197
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

2198
2199
2200
    async fn route_responses(
        &self,
        _headers: Option<&HeaderMap>,
2201
        _body: &ResponsesRequest,
2202
        _model_id: Option<&str>,
2203
2204
2205
2206
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

2207
2208
2209
2210
    async fn get_response(
        &self,
        _headers: Option<&HeaderMap>,
        _response_id: &str,
2211
        _params: &ResponsesGetParams,
2212
    ) -> Response {
2213
2214
2215
2216
2217
2218
2219
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn cancel_response(&self, _headers: Option<&HeaderMap>, _response_id: &str) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

2220
2221
2222
    async fn route_embeddings(
        &self,
        _headers: Option<&HeaderMap>,
2223
        _body: &EmbeddingRequest,
2224
2225
        _model_id: Option<&str>,
    ) -> Response {
2226
2227
2228
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

2229
2230
2231
    async fn route_rerank(
        &self,
        _headers: Option<&HeaderMap>,
2232
        _body: &RerankRequest,
2233
        _model_id: Option<&str>,
2234
    ) -> Response {
2235
2236
2237
2238
2239
2240
2241
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    fn router_type(&self) -> &'static str {
        "grpc"
    }
}
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270

#[cfg(test)]
mod tests {
    use super::*;
    use crate::protocols::spec::{ChatMessage, ContentPart, ImageUrl, UserMessageContent};
    use crate::tokenizer::chat_template::ChatTemplateContentFormat;
    use serde_json::json;

    #[test]
    fn test_transform_messages_string_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Hello".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: None,
                    },
                },
                ContentPart::Text {
                    text: "World".to_string(),
                },
            ]),
            name: None,
        }];

2271
2272
2273
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should flatten multimodal content to text only
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Hello World"
        );
        assert_eq!(transformed_message["role"].as_str().unwrap(), "user");
    }

    #[test]
    fn test_transform_messages_openai_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Describe this image:".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: Some("high".to_string()),
                    },
                },
            ]),
            name: None,
        }];

2304
2305
2306
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should replace media URLs with simple type placeholders
        let content_array = transformed_message["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);

        // Text part should remain unchanged
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[0]["text"], "Describe this image:");

        // Image part should be replaced with simple type placeholder
        assert_eq!(content_array[1], json!({"type": "image"}));
    }

    #[test]
    fn test_transform_messages_simple_string_content() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Text("Simple text message".to_string()),
            name: None,
        }];

2331
2332
2333
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Simple string content should remain unchanged
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Simple text message"
        );
    }

    #[test]
    fn test_transform_messages_assistant_message() {
        let messages = vec![ChatMessage::Assistant {
            role: "assistant".to_string(),
            content: Some("Assistant response".to_string()),
            name: None,
            tool_calls: None,
            reasoning_content: None,
        }];

2355
2356
2357
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        assert_eq!(transformed_message["role"].as_str().unwrap(), "assistant");
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Assistant response"
        );
    }

    #[test]
    fn test_transform_messages_multiple_messages() {
        let messages = vec![
            ChatMessage::System {
                role: "system".to_string(),
                content: "System prompt".to_string(),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "User message".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: None,
                        },
                    },
                ]),
                name: None,
            },
        ];

2394
2395
2396
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421

        assert_eq!(result.len(), 2);

        // System message should remain unchanged
        assert_eq!(result[0]["role"].as_str().unwrap(), "system");
        assert_eq!(result[0]["content"].as_str().unwrap(), "System prompt");

        // User message should be flattened to text only
        assert_eq!(result[1]["role"].as_str().unwrap(), "user");
        assert_eq!(result[1]["content"].as_str().unwrap(), "User message");
    }

    #[test]
    fn test_transform_messages_empty_text_parts() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![ContentPart::ImageUrl {
                image_url: ImageUrl {
                    url: "https://example.com/image.jpg".to_string(),
                    detail: None,
                },
            }]),
            name: None,
        }];

2422
2423
2424
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should keep original multimodal content when no text parts exist
        assert!(transformed_message["content"].is_array());
    }

    #[test]
    fn test_transform_messages_mixed_content_types() {
        let messages = vec![
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Text("Plain text".to_string()),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "With image".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: Some("low".to_string()),
                        },
                    },
                ]),
                name: None,
            },
        ];

2458
2459
2460
        let result_string =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
2461
2462
2463
2464
2465

        assert_eq!(result_string.len(), 2);
        assert_eq!(result_string[0]["content"].as_str().unwrap(), "Plain text");
        assert_eq!(result_string[1]["content"].as_str().unwrap(), "With image");

2466
2467
2468
        let result_openai =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478

        assert_eq!(result_openai.len(), 2);
        assert_eq!(result_openai[0]["content"].as_str().unwrap(), "Plain text");

        let content_array = result_openai[1]["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[1], json!({"type": "image"}));
    }
}