router.rs 36.6 KB
Newer Older
1
2
// gRPC Router Implementation

3
4
5
6
7
8
9
10
11
12
13
use std::sync::Arc;

use async_trait::async_trait;
use axum::{
    body::Body,
    extract::Request,
    http::{HeaderMap, StatusCode},
    response::{IntoResponse, Response},
};
use tracing::{debug, error, info, warn};

14
use crate::config::types::RetryConfig;
15
use crate::core::{ConnectionMode, Worker, WorkerRegistry, WorkerType};
16
use crate::grpc_client::{proto, SglangSchedulerClient};
17
use crate::metrics::RouterMetrics;
18
use crate::policies::PolicyRegistry;
19
20
use crate::protocols::spec::ChatMessage;
use crate::protocols::spec::{
21
22
    ChatCompletionRequest, CompletionRequest, EmbeddingRequest, GenerateRequest, RerankRequest,
    ResponsesGetParams, ResponsesRequest, StringOrArray, Tool, ToolChoice,
23
};
24
use crate::reasoning_parser::ParserFactory;
25
use crate::routers::RouterTrait;
26
27
use crate::server::AppContext;
use crate::tokenizer::chat_template::{ChatTemplateContentFormat, ChatTemplateParams};
28
use crate::tokenizer::stop::{SequenceDecoderOutput, StopSequenceDecoderBuilder};
29
use crate::tokenizer::traits::Tokenizer;
30
use crate::tokenizer::HuggingFaceTokenizer;
31
use crate::tool_parser::ParserRegistry;
32
use serde_json::Value;
33
use tokio_stream::StreamExt;
34
use uuid::Uuid;
35

36
37
38
39
40
41
42
// Data structures for processing
#[derive(Debug)]
pub struct ProcessedMessages {
    pub text: String,
    pub multimodal_inputs: Option<proto::MultimodalInputs>,
    pub stop_sequences: Option<StringOrArray>,
}
43

44
/// gRPC router implementation for SGLang
45
#[allow(dead_code)]
46
pub struct GrpcRouter {
47
48
    worker_registry: Arc<WorkerRegistry>,
    policy_registry: Arc<PolicyRegistry>,
49
50
51
52
53
54
55
    tokenizer: Arc<dyn Tokenizer>,
    reasoning_parser_factory: ParserFactory,
    tool_parser_registry: &'static ParserRegistry,
    dp_aware: bool,
    api_key: Option<String>,
    retry_config: RetryConfig,
}
56
57

impl GrpcRouter {
58
    /// Create a new gRPC router
59
    pub async fn new(ctx: &Arc<AppContext>) -> Result<Self, String> {
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        // Extract necessary components from context
        let tokenizer = ctx
            .tokenizer
            .as_ref()
            .ok_or_else(|| "gRPC router requires tokenizer".to_string())?
            .clone();
        let reasoning_parser_factory = ctx
            .reasoning_parser_factory
            .as_ref()
            .ok_or_else(|| "gRPC router requires reasoning parser factory".to_string())?
            .clone();
        let tool_parser_registry = ctx
            .tool_parser_registry
            .ok_or_else(|| "gRPC router requires tool parser registry".to_string())?;

75
76
        let worker_registry = ctx.worker_registry.clone();
        let policy_registry = ctx.policy_registry.clone();
Chang Su's avatar
Chang Su committed
77

78
        let workers = worker_registry.get_workers_filtered(
79
            None,
80
            Some(WorkerType::Regular),
81
            Some(ConnectionMode::Grpc { port: None }),
82
            false,
83
84
        );

85
86
        RouterMetrics::set_active_workers(workers.len());
        info!("gRPC router found {} workers in registry", workers.len());
87
88

        Ok(GrpcRouter {
89
90
            worker_registry,
            policy_registry,
91
92
93
            tokenizer,
            reasoning_parser_factory,
            tool_parser_registry,
94
95
96
            dp_aware: ctx.router_config.dp_aware,
            api_key: ctx.router_config.api_key.clone(),
            retry_config: ctx.router_config.effective_retry_config(),
97
98
        })
    }
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    /// Main route_chat implementation
    async fn route_chat_impl(
        &self,
        _headers: Option<&HeaderMap>,
        body: &ChatCompletionRequest,
        model_id: Option<&str>,
    ) -> Response {
        debug!(
            "Processing chat completion request for model: {:?}",
            model_id
        );

        // Step 1: Select worker (fail fast if no workers available)
        let worker = match self.select_worker_for_request(model_id, None) {
            Some(w) => w,
            None => {
                warn!("No available workers for model: {:?}", model_id);
                return (StatusCode::SERVICE_UNAVAILABLE, "No available workers").into_response();
            }
        };

        debug!("Selected worker: {}", worker.url());

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        // Step 2: Get gRPC client from worker
        let client = match worker.get_grpc_client().await {
            Ok(Some(client_arc)) => {
                // Clone the client from inside the Arc<Mutex<>>
                let client = client_arc.lock().await.clone();
                client
            }
            Ok(None) => {
                error!("Selected worker is not a gRPC worker");
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    "Selected worker is not configured for gRPC",
                )
                    .into_response();
            }
138
            Err(e) => {
139
                error!("Failed to get gRPC client from worker: {}", e);
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Failed to get gRPC client: {}", e),
                )
                    .into_response();
            }
        };

        // Step 3: Process messages and apply chat template
        let processed_messages = match self.process_chat_messages(body) {
            Ok(msgs) => msgs,
            Err(e) => {
                error!("Failed to process chat messages: {}", e);
                return (StatusCode::BAD_REQUEST, e.to_string()).into_response();
            }
        };

        // Step 4: Tokenize the processed text
        let encoding = match self.tokenizer.encode(&processed_messages.text) {
            Ok(encoding) => encoding,
            Err(e) => {
                error!("Tokenization failed: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Tokenization failed: {}", e),
                )
                    .into_response();
            }
        };

        let token_ids = encoding.token_ids().to_vec();
        debug!("Tokenized {} tokens from input", token_ids.len());

        // Step 5: Build tool constraints if needed
174
        let tool_call_constraint = if let Some(tools) = &body.tools {
175
176
177
178
179
            self.generate_tool_constraints(tools, &body.tool_choice, &body.model)
        } else {
            None
        };

180
181
        // Step 6: Build the base gRPC request
        let request_id = format!("chatcmpl-{}", Uuid::new_v4());
182
        let request = match client.build_generate_request(
183
184
185
            request_id,
            body,
            processed_messages.text.clone(),
186
            token_ids,
187
188
189
190
            processed_messages.multimodal_inputs,
            tool_call_constraint, // Pass the full tuple (type, value)
        ) {
            Ok(request) => request,
191
            Err(e) => {
192
                error!("Failed to build gRPC request: {}", e);
193
194
                return (
                    StatusCode::BAD_REQUEST,
195
                    format!("Invalid request parameters: {}", e),
196
197
198
199
200
                )
                    .into_response();
            }
        };

201
        // Step 7: Handle streaming vs non-streaming
202
        if body.stream {
203
            self.handle_streaming_chat(client, request, body).await
204
        } else {
205
            self.handle_non_streaming_chat(client, request, body).await
206
207
208
        }
    }

209
210
211
212
213
    /// Select a worker for the request
    fn select_worker_for_request(
        &self,
        model_id: Option<&str>,
        text: Option<&str>,
214
    ) -> Option<Arc<dyn Worker>> {
215
216
217
218
        // Get workers for the specified model, filtered by connection mode
        let workers = self.worker_registry.get_workers_filtered(
            model_id,
            Some(WorkerType::Regular),
219
            Some(ConnectionMode::Grpc { port: None }),
220
221
222
223
            false, // get all workers, we'll filter by is_available() next
        );

        // Filter by availability (health + circuit breaker)
224
        let available: Vec<Arc<dyn Worker>> = workers
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
            .iter()
            .filter(|w| w.is_available())
            .cloned()
            .collect();

        if available.is_empty() {
            return None;
        }

        // Get the appropriate policy for this model
        let policy = match model_id {
            Some(model) => self.policy_registry.get_policy_or_default(model),
            None => self.policy_registry.get_default_policy(),
        };

        // Select worker using the policy
        let idx = policy.select_worker(&available, text)?;
        Some(available[idx].clone())
    }
244
245
246
247
248
249
250

    /// Process chat messages and apply template
    fn process_chat_messages(
        &self,
        request: &ChatCompletionRequest,
    ) -> Result<ProcessedMessages, String> {
        // Use the tokenizer's chat template - we require HuggingFace tokenizer for gRPC
251
252
253
254
        let formatted_text = if let Some(hf_tokenizer) = self
            .tokenizer
            .as_any()
            .downcast_ref::<HuggingFaceTokenizer>()
255
        {
256
257
            // Get content format and transform messages accordingly
            let content_format = hf_tokenizer.chat_template_content_format();
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
            let mut transformed_messages =
                Self::process_content_format(&request.messages, content_format)?;

            // Process tool call arguments in assistant messages
            Self::process_tool_call_arguments(&mut transformed_messages)?;

            // Convert tools to JSON values for template processing
            let tools_json: Option<Vec<serde_json::Value>> = request
                .tools
                .as_ref()
                .map(|tools| {
                    tools
                        .iter()
                        .map(serde_json::to_value)
                        .collect::<Result<Vec<_>, _>>()
                })
                .transpose()
                .map_err(|e| format!("Failed to serialize tools: {}", e))?;

            // Build template kwargs, merging reasoning_effort if present
            let mut combined_template_kwargs = std::collections::HashMap::new();

            // Add reasoning_effort if present (like Python does)
            if let Some(reasoning_effort) = &request.reasoning_effort {
                combined_template_kwargs.insert(
                    "reasoning_effort".to_string(),
                    serde_json::Value::String(reasoning_effort.clone()),
                );
            }

            // Add any additional template kwargs from request
            if let Some(template_kwargs) = &request.chat_template_kwargs {
                for (key, value) in template_kwargs {
                    combined_template_kwargs.insert(key.clone(), value.clone());
                }
            }

            let final_template_kwargs = if combined_template_kwargs.is_empty() {
                None
            } else {
                Some(&combined_template_kwargs)
            };

            let params = ChatTemplateParams {
                add_generation_prompt: true,
                continue_final_message: request.continue_final_message,
                tools: tools_json.as_deref(),
                template_kwargs: final_template_kwargs,
                ..Default::default()
            };

            // Handle assistant prefix for continue_final_message
            let assistant_prefix = if request.continue_final_message
                && !transformed_messages.is_empty()
                && transformed_messages
                    .last()
                    .and_then(|msg| msg.get("role"))
                    .and_then(|v| v.as_str())
                    == Some("assistant")
            {
                // Pop the last message to handle it separately
                let last_msg = transformed_messages.pop().unwrap();
                last_msg
                    .get("content")
                    .and_then(|v| v.as_str())
                    .map(|s| s.to_string())
            } else {
                None
            };

            // Apply chat template with the (now possibly shorter) list of messages
            let rendered = hf_tokenizer
                .apply_chat_template(&transformed_messages, params)
                .map_err(|e| format!("Failed to apply chat template: {}", e))?;
332

333
334
335
336
337
338
            // Append assistant prefix if we have one
            if let Some(prefix) = assistant_prefix {
                format!("{}{}", rendered, prefix)
            } else {
                rendered
            }
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        } else {
            return Err(
                "gRPC router requires HuggingFace tokenizer with chat template support".to_string(),
            );
        };

        // Placeholder for multimodal inputs
        let multimodal_inputs = None;

        Ok(ProcessedMessages {
            text: formatted_text,
            multimodal_inputs,
            stop_sequences: request.stop.clone(),
        })
    }

355
356
    /// Process messages based on content format for ANY message type
    fn process_content_format(
357
358
359
        messages: &[ChatMessage],
        content_format: ChatTemplateContentFormat,
    ) -> Result<Vec<Value>, String> {
360
361
362
363
364
365
366
367
368
369
        messages
            .iter()
            .map(|message| {
                let mut message_json = serde_json::to_value(message)
                    .map_err(|e| format!("Failed to serialize message: {}", e))?;

                if let Some(obj) = message_json.as_object_mut() {
                    if let Some(content_value) = obj.get_mut("content") {
                        Self::transform_content_field(content_value, content_format);
                    }
370
                }
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

                Ok(message_json)
            })
            .collect()
    }

    /// Transform a single content field based on content format
    fn transform_content_field(
        content_value: &mut Value,
        content_format: ChatTemplateContentFormat,
    ) {
        let Some(content_array) = content_value.as_array() else {
            return; // Not multimodal, keep as-is
        };

        match content_format {
            ChatTemplateContentFormat::String => {
                // Extract and join text parts only
                let text_parts: Vec<String> = content_array
                    .iter()
                    .filter_map(|part| {
                        part.as_object()?
                            .get("type")?
                            .as_str()
                            .filter(|&t| t == "text")
                            .and_then(|_| part.as_object()?.get("text")?.as_str())
                            .map(String::from)
                    })
                    .collect();

                if !text_parts.is_empty() {
                    *content_value = Value::String(text_parts.join(" "));
403
                }
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
            }
            ChatTemplateContentFormat::OpenAI => {
                // Replace media URLs with simple type placeholders
                let processed_parts: Vec<Value> = content_array
                    .iter()
                    .map(|part| {
                        part.as_object()
                            .and_then(|obj| obj.get("type")?.as_str())
                            .and_then(|type_str| match type_str {
                                "image_url" => Some(serde_json::json!({"type": "image"})),
                                "video_url" => Some(serde_json::json!({"type": "video"})),
                                "audio_url" => Some(serde_json::json!({"type": "audio"})),
                                _ => None,
                            })
                            .unwrap_or_else(|| part.clone())
                    })
                    .collect();
421

422
423
424
                *content_value = Value::Array(processed_parts);
            }
        }
425
426
    }

427
428
    /// Process tool call arguments in messages
    /// Per Transformers docs, tool call arguments in assistant messages should be dicts
429
    fn process_tool_call_arguments(messages: &mut [Value]) -> Result<(), String> {
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        for msg in messages {
            // Early return if not assistant message
            let role = msg.get("role").and_then(|v| v.as_str());
            if role != Some("assistant") {
                continue;
            }

            // Early return if no tool_calls
            let Some(tool_calls) = msg.get_mut("tool_calls").and_then(|tc| tc.as_array_mut())
            else {
                continue;
            };

            // Process each tool call's arguments
            for call in tool_calls {
                let Some(function) = call.get_mut("function") else {
                    continue;
                };
                let Some(args) = function.get_mut("arguments") else {
                    continue;
                };
                let Some(args_str) = args.as_str() else {
                    continue;
                };

                // Parse JSON string to object (like Python json.loads)
                match serde_json::from_str::<serde_json::Value>(args_str) {
                    Ok(parsed) => *args = parsed,
                    Err(e) => {
                        return Err(format!(
                            "Failed to parse tool call arguments as JSON: '{}'. Error: {}",
                            args_str, e
                        ))
                    }
                }
            }
        }
        Ok(())
    }

470
471
472
    /// Generate tool constraints for structured generation
    fn generate_tool_constraints(
        &self,
473
474
        _tools: &[Tool],
        _tool_choice: &Option<ToolChoice>,
475
        model: &str,
476
    ) -> Option<(String, String)> {
477
        let _parser = self.tool_parser_registry.get_parser(model)?;
478
479
        // TODO: Implement actual constraint generation logic
        // For now, return None as this is placeholder implementation
480
481
482
        None
    }

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    /// Create a StopSequenceDecoder from the chat completion request
    fn create_stop_decoder(
        &self,
        original_request: &ChatCompletionRequest,
    ) -> crate::tokenizer::stop::StopSequenceDecoder {
        // Extract stop sequences from request
        let stop_sequences: Vec<String> = match &original_request.stop {
            Some(StringOrArray::String(s)) => vec![s.clone()],
            Some(StringOrArray::Array(arr)) => arr.clone(),
            None => vec![],
        };

        // Build stop sequence decoder
        let mut builder = StopSequenceDecoderBuilder::new(self.tokenizer.clone())
            .skip_special_tokens(original_request.skip_special_tokens);

        // Add stop sequences (visible if no_stop_trim is true, hidden otherwise)
        for seq in stop_sequences {
            builder = if original_request.no_stop_trim {
                builder.visible_stop_sequence(seq)
            } else {
                builder.stop_sequence(seq)
            };
        }

        // Add stop token IDs (visible if no_stop_trim is true, hidden otherwise)
        if let Some(stop_token_ids) = &original_request.stop_token_ids {
            for &token_id in stop_token_ids {
                builder = if original_request.no_stop_trim {
                    builder.visible_stop_token(token_id)
                } else {
                    builder.stop_token(token_id)
                };
            }
        }

        builder.build()
    }

    /// Process a chunk of tokens through the stop decoder
    fn process_chunk_tokens(
        stop_decoder: &mut crate::tokenizer::stop::StopSequenceDecoder,
        token_ids: &[u32],
    ) -> (String, bool) {
        let mut chunk_text = String::new();

        for &token_id in token_ids {
            match stop_decoder.process_token(token_id).unwrap_or_else(|e| {
                debug!(
                    "Error processing token {}: {}. Treating as Held.",
                    token_id, e
                );
                SequenceDecoderOutput::Held
            }) {
                SequenceDecoderOutput::Text(text) => {
                    chunk_text.push_str(&text);
                }
                SequenceDecoderOutput::StoppedWithText(text) => {
                    chunk_text.push_str(&text);
                    return (chunk_text, true); // Return text and signal to stop
                }
                SequenceDecoderOutput::Stopped => {
                    return (chunk_text, true); // Return text and signal to stop
                }
                SequenceDecoderOutput::Held => {
                    // Text held for potential stop sequence match
                }
            }
        }
        (chunk_text, false) // Return text and continue processing
    }

    /// Submit request and handle streaming response for chat completions route
556
557
    async fn handle_streaming_chat(
        &self,
558
559
560
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &ChatCompletionRequest,
561
    ) -> Response {
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
        let mut stop_decoder = self.create_stop_decoder(original_request);

        // Process streaming tokens
        let mut grpc_stream = match client.generate(request).await {
            Ok(stream) => stream,
            Err(e) => {
                error!("Failed to start generation: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Generation failed: {}", e),
                )
                    .into_response();
            }
        };

        let mut decoded_text = String::new();

        while let Some(response) = grpc_stream.next().await {
            let gen_response = match response {
                Ok(resp) => resp,
                Err(e) => {
                    error!("Stream error: {}", e);
                    break;
                }
            };

            match gen_response.response {
                Some(proto::generate_response::Response::Chunk(chunk)) => {
                    // Process tokens and check if we should stop
                    let (chunk_text, should_stop) =
                        Self::process_chunk_tokens(&mut stop_decoder, &chunk.token_ids);
                    decoded_text.push_str(&chunk_text);
                    if should_stop {
                        break;
                    }
                    continue;
                }
                Some(proto::generate_response::Response::Complete(_complete)) => {
                    // Flush any remaining text
                    if let SequenceDecoderOutput::Text(text) = stop_decoder.flush() {
                        if !text.is_empty() {
                            decoded_text.push_str(&text);
                            debug!("Flushed text: {}", text);
                        }
                    }
                    break;
                }
                Some(proto::generate_response::Response::Error(error)) => {
                    error!("Generation error: {}", error.message);
                    break;
                }
                None => continue,
            }
        }

        // TODO: Replace with proper SSE streaming response
        // For now, return the complete decoded text
        (StatusCode::OK, format!("Decoded text: {}", decoded_text)).into_response()
620
621
    }

622
    /// Submit request and handle non-streaming response for chat completions route
623
624
    async fn handle_non_streaming_chat(
        &self,
625
626
627
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &ChatCompletionRequest,
628
    ) -> Response {
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
        let mut stop_decoder = self.create_stop_decoder(original_request);

        // Small helpers to log + return a uniform 500
        let fail_str = |msg: &'static str| -> Response {
            error!("{}", msg);
            (StatusCode::INTERNAL_SERVER_ERROR, msg).into_response()
        };
        let fail_fmt = |prefix: &str, e: &dyn std::fmt::Display| -> Response {
            error!("{}{}", prefix, e);
            (
                StatusCode::INTERNAL_SERVER_ERROR,
                format!("{}{}", prefix, e),
            )
                .into_response()
        };

        // Start generation
        let mut stream = match client.generate(request).await {
            Ok(s) => s,
            Err(e) => return fail_fmt("Failed to start generation: ", &e),
        };

        // Get the single Complete response
        let gen_response = match stream.next().await {
            Some(Ok(r)) => r,
            Some(Err(e)) => return fail_fmt("Failed to get GenerateResponse: ", &e),
            None => return fail_str("No response from server"),
        };

        // Extract the expected variant early
        let complete = match gen_response.response {
            Some(proto::generate_response::Response::Complete(c)) => c,
            Some(proto::generate_response::Response::Error(err)) => {
                error!("Generation failed: {}", err.message);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Generation failed: {}", err.message),
                )
                    .into_response();
            }
            Some(proto::generate_response::Response::Chunk(_)) => {
                return fail_str("Unexpected chunk response for non-streaming request")
            }
            None => return fail_str("Empty response from server"),
        };

        // Decode tokens
        let outputs = match stop_decoder.process_tokens(&complete.output_ids) {
            Ok(o) => o,
            Err(e) => return fail_fmt("Failed to process tokens: ", &e),
        };

        // Accumulate text with early breaks
        let mut final_text = String::new();
        for output in outputs {
            match output {
                SequenceDecoderOutput::Text(t) => final_text.push_str(&t),
                SequenceDecoderOutput::StoppedWithText(t) => {
                    final_text.push_str(&t);
                    break;
                }
                SequenceDecoderOutput::Stopped => break,
                SequenceDecoderOutput::Held => {}
            }
        }

        // Flush remaining text
        if let SequenceDecoderOutput::Text(t) = stop_decoder.flush() {
            final_text.push_str(&t);
        }

        // TODO: Create proper OpenAI-compatible response
        (StatusCode::OK, format!("Final text: {}", final_text)).into_response()
702
    }
703
704
705
706
}

impl std::fmt::Debug for GrpcRouter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
707
        let stats = self.worker_registry.stats();
708
        f.debug_struct("GrpcRouter")
709
            .field("workers_count", &stats.total_workers)
710
711
            .field("dp_aware", &self.dp_aware)
            .finish()
712
713
714
715
716
717
718
719
720
721
    }
}

#[async_trait]
impl RouterTrait for GrpcRouter {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    async fn health_generate(&self, _req: Request<Body>) -> Response {
722
723
724
725
726
727
        // TODO: Implement actual generation test for gRPC
        (
            StatusCode::NOT_IMPLEMENTED,
            "Health generate not yet implemented for gRPC",
        )
            .into_response()
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    }

    async fn get_server_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_models(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_model_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn route_generate(
        &self,
        _headers: Option<&HeaderMap>,
745
        _body: &GenerateRequest,
746
        _model_id: Option<&str>,
747
748
749
750
751
752
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn route_chat(
        &self,
753
        headers: Option<&HeaderMap>,
754
        body: &ChatCompletionRequest,
755
        model_id: Option<&str>,
756
    ) -> Response {
757
        self.route_chat_impl(headers, body, model_id).await
758
759
760
761
762
    }

    async fn route_completion(
        &self,
        _headers: Option<&HeaderMap>,
763
        _body: &CompletionRequest,
764
        _model_id: Option<&str>,
765
766
767
768
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

769
770
771
    async fn route_responses(
        &self,
        _headers: Option<&HeaderMap>,
772
        _body: &ResponsesRequest,
773
        _model_id: Option<&str>,
774
775
776
777
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

778
779
780
781
    async fn get_response(
        &self,
        _headers: Option<&HeaderMap>,
        _response_id: &str,
782
        _params: &ResponsesGetParams,
783
    ) -> Response {
784
785
786
787
788
789
790
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn cancel_response(&self, _headers: Option<&HeaderMap>, _response_id: &str) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

791
792
793
    async fn route_embeddings(
        &self,
        _headers: Option<&HeaderMap>,
794
        _body: &EmbeddingRequest,
795
796
        _model_id: Option<&str>,
    ) -> Response {
797
798
799
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

800
801
802
    async fn route_rerank(
        &self,
        _headers: Option<&HeaderMap>,
803
        _body: &RerankRequest,
804
        _model_id: Option<&str>,
805
    ) -> Response {
806
807
808
809
810
811
812
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    fn router_type(&self) -> &'static str {
        "grpc"
    }
}
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

#[cfg(test)]
mod tests {
    use super::*;
    use crate::protocols::spec::{ChatMessage, ContentPart, ImageUrl, UserMessageContent};
    use crate::tokenizer::chat_template::ChatTemplateContentFormat;
    use serde_json::json;

    #[test]
    fn test_transform_messages_string_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Hello".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: None,
                    },
                },
                ContentPart::Text {
                    text: "World".to_string(),
                },
            ]),
            name: None,
        }];

842
843
844
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should flatten multimodal content to text only
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Hello World"
        );
        assert_eq!(transformed_message["role"].as_str().unwrap(), "user");
    }

    #[test]
    fn test_transform_messages_openai_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Describe this image:".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: Some("high".to_string()),
                    },
                },
            ]),
            name: None,
        }];

875
876
877
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should replace media URLs with simple type placeholders
        let content_array = transformed_message["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);

        // Text part should remain unchanged
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[0]["text"], "Describe this image:");

        // Image part should be replaced with simple type placeholder
        assert_eq!(content_array[1], json!({"type": "image"}));
    }

    #[test]
    fn test_transform_messages_simple_string_content() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Text("Simple text message".to_string()),
            name: None,
        }];

902
903
904
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Simple string content should remain unchanged
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Simple text message"
        );
    }

    #[test]
    fn test_transform_messages_assistant_message() {
        let messages = vec![ChatMessage::Assistant {
            role: "assistant".to_string(),
            content: Some("Assistant response".to_string()),
            name: None,
            tool_calls: None,
            function_call: None,
            reasoning_content: None,
        }];

927
928
929
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        assert_eq!(transformed_message["role"].as_str().unwrap(), "assistant");
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Assistant response"
        );
    }

    #[test]
    fn test_transform_messages_multiple_messages() {
        let messages = vec![
            ChatMessage::System {
                role: "system".to_string(),
                content: "System prompt".to_string(),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "User message".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: None,
                        },
                    },
                ]),
                name: None,
            },
        ];

966
967
968
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

        assert_eq!(result.len(), 2);

        // System message should remain unchanged
        assert_eq!(result[0]["role"].as_str().unwrap(), "system");
        assert_eq!(result[0]["content"].as_str().unwrap(), "System prompt");

        // User message should be flattened to text only
        assert_eq!(result[1]["role"].as_str().unwrap(), "user");
        assert_eq!(result[1]["content"].as_str().unwrap(), "User message");
    }

    #[test]
    fn test_transform_messages_empty_text_parts() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![ContentPart::ImageUrl {
                image_url: ImageUrl {
                    url: "https://example.com/image.jpg".to_string(),
                    detail: None,
                },
            }]),
            name: None,
        }];

994
995
996
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should keep original multimodal content when no text parts exist
        assert!(transformed_message["content"].is_array());
    }

    #[test]
    fn test_transform_messages_mixed_content_types() {
        let messages = vec![
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Text("Plain text".to_string()),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "With image".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: Some("low".to_string()),
                        },
                    },
                ]),
                name: None,
            },
        ];

1030
1031
1032
        let result_string =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1033
1034
1035
1036
1037

        assert_eq!(result_string.len(), 2);
        assert_eq!(result_string[0]["content"].as_str().unwrap(), "Plain text");
        assert_eq!(result_string[1]["content"].as_str().unwrap(), "With image");

1038
1039
1040
        let result_openai =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

        assert_eq!(result_openai.len(), 2);
        assert_eq!(result_openai[0]["content"].as_str().unwrap(), "Plain text");

        let content_array = result_openai[1]["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[1], json!({"type": "image"}));
    }
}