router.rs 32.6 KB
Newer Older
1
2
// gRPC Router Implementation

3
4
5
6
7
8
9
10
11
12
13
14
use std::sync::Arc;
use std::time::Duration;

use async_trait::async_trait;
use axum::{
    body::Body,
    extract::Request,
    http::{HeaderMap, StatusCode},
    response::{IntoResponse, Response},
};
use tracing::{debug, error, info, warn};

15
use crate::config::types::RetryConfig;
16
use crate::core::{
17
    BasicWorkerBuilder, CircuitBreakerConfig, HealthConfig, WorkerRegistry, WorkerType,
18
};
19
use crate::grpc_client::{proto, SglangSchedulerClient};
20
use crate::metrics::RouterMetrics;
21
use crate::policies::{LoadBalancingPolicy, PolicyRegistry};
22
use crate::protocols::spec::{ChatCompletionRequest, StringOrArray};
23
use crate::reasoning_parser::ParserFactory;
24
use crate::routers::RouterTrait;
25
use crate::tokenizer::traits::Tokenizer;
26
use crate::tool_parser::ParserRegistry;
27
28
use uuid::Uuid;

29
use crate::tokenizer::chat_template::{ChatTemplateContentFormat, ChatTemplateParams};
30
31
use serde_json::Value;

32
33
34
35
36
37
38
// Data structures for processing
#[derive(Debug)]
pub struct ProcessedMessages {
    pub text: String,
    pub multimodal_inputs: Option<proto::MultimodalInputs>,
    pub stop_sequences: Option<StringOrArray>,
}
39

40
41
42
/// gRPC router implementation for SGLang
#[allow(dead_code)] // Fields will be used once implementation is complete
pub struct GrpcRouter {
43
44
45
46
    /// Centralized worker registry
    worker_registry: Arc<WorkerRegistry>,
    /// Centralized policy registry
    policy_registry: Arc<PolicyRegistry>,
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    /// Load balancing policy
    policy: Arc<dyn LoadBalancingPolicy>,
    /// Tokenizer for handling text encoding/decoding
    tokenizer: Arc<dyn Tokenizer>,
    /// Reasoning parser factory for structured reasoning outputs
    reasoning_parser_factory: ParserFactory,
    /// Tool parser registry for function/tool calls
    tool_parser_registry: &'static ParserRegistry,
    /// Configuration
    timeout_secs: u64,
    interval_secs: u64,
    dp_aware: bool,
    api_key: Option<String>,
    retry_config: RetryConfig,
    circuit_breaker_config: CircuitBreakerConfig,
}
63
64

impl GrpcRouter {
65
66
67
68
    /// Create a new gRPC router
    pub async fn new(
        worker_urls: Vec<String>,
        policy: Arc<dyn LoadBalancingPolicy>,
69
        ctx: &Arc<crate::server::AppContext>,
70
71
72
73
    ) -> Result<Self, String> {
        // Update metrics
        RouterMetrics::set_active_workers(worker_urls.len());

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        // Extract necessary components from context
        let tokenizer = ctx
            .tokenizer
            .as_ref()
            .ok_or_else(|| "gRPC router requires tokenizer".to_string())?
            .clone();
        let reasoning_parser_factory = ctx
            .reasoning_parser_factory
            .as_ref()
            .ok_or_else(|| "gRPC router requires reasoning parser factory".to_string())?
            .clone();
        let tool_parser_registry = ctx
            .tool_parser_registry
            .ok_or_else(|| "gRPC router requires tool parser registry".to_string())?;

89
        // Convert config CircuitBreakerConfig to core CircuitBreakerConfig
90
        let circuit_breaker_config = ctx.router_config.effective_circuit_breaker_config();
91
92
93
94
95
96
97
        let core_cb_config = CircuitBreakerConfig {
            failure_threshold: circuit_breaker_config.failure_threshold,
            success_threshold: circuit_breaker_config.success_threshold,
            timeout_duration: Duration::from_secs(circuit_breaker_config.timeout_duration_secs),
            window_duration: Duration::from_secs(circuit_breaker_config.window_duration_secs),
        };

98
99
100
        // Get registries from context
        let worker_registry = ctx.worker_registry.clone();
        let policy_registry = ctx.policy_registry.clone();
Chang Su's avatar
Chang Su committed
101

102
        // Create Worker trait objects with gRPC connection mode and register them
103
        // Workers will lazily initialize their gRPC clients on first use
Chang Su's avatar
Chang Su committed
104
        for url in &worker_urls {
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
            let worker = BasicWorkerBuilder::new(url.clone())
                .worker_type(WorkerType::Regular)
                .connection_mode(crate::core::ConnectionMode::Grpc { port: None })
                .circuit_breaker_config(core_cb_config.clone())
                .health_config(HealthConfig {
                    timeout_secs: ctx.router_config.health_check.timeout_secs,
                    check_interval_secs: ctx.router_config.health_check.check_interval_secs,
                    endpoint: ctx.router_config.health_check.endpoint.clone(),
                    failure_threshold: ctx.router_config.health_check.failure_threshold,
                    success_threshold: ctx.router_config.health_check.success_threshold,
                })
                .build();

            worker_registry.register(Arc::new(worker));
            info!(
                "Registered gRPC worker at {} (will connect on first use)",
                url
            );
        }

        if worker_urls.is_empty() {
            return Err("No gRPC workers configured".to_string());
Chang Su's avatar
Chang Su committed
127
        }
128

129
130
131
132
133
134
135
136
        // Get only gRPC workers from registry for policy initialization
        let workers = worker_registry.get_workers_filtered(
            None, // any model
            Some(WorkerType::Regular),
            Some(crate::core::ConnectionMode::Grpc { port: None }),
            false, // include unhealthy workers during initialization
        );

137
138
139
140
141
142
143
144
        // Initialize policy with workers if needed
        if let Some(cache_aware) = policy
            .as_any()
            .downcast_ref::<crate::policies::CacheAwarePolicy>()
        {
            cache_aware.init_workers(&workers);
        }

145
        // No need for local health checkers - WorkerRegistry handles health checking
146
147

        Ok(GrpcRouter {
148
149
            worker_registry,
            policy_registry,
150
151
152
153
            policy,
            tokenizer,
            reasoning_parser_factory,
            tool_parser_registry,
154
155
156
157
158
            timeout_secs: ctx.router_config.worker_startup_timeout_secs,
            interval_secs: ctx.router_config.worker_startup_check_interval_secs,
            dp_aware: ctx.router_config.dp_aware,
            api_key: ctx.router_config.api_key.clone(),
            retry_config: ctx.router_config.effective_retry_config(),
159
160
161
            circuit_breaker_config: core_cb_config,
        })
    }
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

    // ============ Chat Implementation ============

    /// Main route_chat implementation
    async fn route_chat_impl(
        &self,
        _headers: Option<&HeaderMap>,
        body: &ChatCompletionRequest,
        model_id: Option<&str>,
    ) -> Response {
        debug!(
            "Processing chat completion request for model: {:?}",
            model_id
        );

        // Step 1: Select worker (fail fast if no workers available)
        let worker = match self.select_worker_for_request(model_id, None) {
            Some(w) => w,
            None => {
                warn!("No available workers for model: {:?}", model_id);
                return (StatusCode::SERVICE_UNAVAILABLE, "No available workers").into_response();
            }
        };

        debug!("Selected worker: {}", worker.url());

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        // Step 2: Get gRPC client from worker
        let client = match worker.get_grpc_client().await {
            Ok(Some(client_arc)) => {
                // Clone the client from inside the Arc<Mutex<>>
                let client = client_arc.lock().await.clone();
                client
            }
            Ok(None) => {
                error!("Selected worker is not a gRPC worker");
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    "Selected worker is not configured for gRPC",
                )
                    .into_response();
            }
203
            Err(e) => {
204
                error!("Failed to get gRPC client from worker: {}", e);
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Failed to get gRPC client: {}", e),
                )
                    .into_response();
            }
        };

        // Step 3: Process messages and apply chat template
        let processed_messages = match self.process_chat_messages(body) {
            Ok(msgs) => msgs,
            Err(e) => {
                error!("Failed to process chat messages: {}", e);
                return (StatusCode::BAD_REQUEST, e.to_string()).into_response();
            }
        };

        // Step 4: Tokenize the processed text
        let encoding = match self.tokenizer.encode(&processed_messages.text) {
            Ok(encoding) => encoding,
            Err(e) => {
                error!("Tokenization failed: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Tokenization failed: {}", e),
                )
                    .into_response();
            }
        };

        let token_ids = encoding.token_ids().to_vec();
        debug!("Tokenized {} tokens from input", token_ids.len());

        // Step 5: Build tool constraints if needed
239
        let tool_call_constraint = if let Some(tools) = &body.tools {
240
241
242
243
244
            self.generate_tool_constraints(tools, &body.tool_choice, &body.model)
        } else {
            None
        };

245
246
        // Step 6: Build the base gRPC request
        let request_id = format!("chatcmpl-{}", Uuid::new_v4());
247
        let request = match client.build_generate_request(
248
249
250
251
252
253
254
255
            request_id,
            body,
            processed_messages.text.clone(),
            token_ids.into_iter().map(|id| id as i32).collect(),
            processed_messages.multimodal_inputs,
            tool_call_constraint, // Pass the full tuple (type, value)
        ) {
            Ok(request) => request,
256
            Err(e) => {
257
                error!("Failed to build gRPC request: {}", e);
258
259
                return (
                    StatusCode::BAD_REQUEST,
260
                    format!("Invalid request parameters: {}", e),
261
262
263
264
265
                )
                    .into_response();
            }
        };

266
        // Step 7: Handle streaming vs non-streaming
267
        if body.stream {
268
            self.handle_streaming_chat(client, request, body).await
269
        } else {
270
            self.handle_non_streaming_chat(client, request, body).await
271
272
273
274
        }
    }

    // ============ Helper Methods ============
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    /// Select a worker for the request
    fn select_worker_for_request(
        &self,
        model_id: Option<&str>,
        text: Option<&str>,
    ) -> Option<Arc<dyn crate::core::Worker>> {
        // Get workers for the specified model, filtered by connection mode
        let workers = self.worker_registry.get_workers_filtered(
            model_id,
            Some(WorkerType::Regular),
            Some(crate::core::ConnectionMode::Grpc { port: None }),
            false, // get all workers, we'll filter by is_available() next
        );

        // Filter by availability (health + circuit breaker)
        let available: Vec<Arc<dyn crate::core::Worker>> = workers
            .iter()
            .filter(|w| w.is_available())
            .cloned()
            .collect();

        if available.is_empty() {
            return None;
        }

        // Get the appropriate policy for this model
        let policy = match model_id {
            Some(model) => self.policy_registry.get_policy_or_default(model),
            None => self.policy_registry.get_default_policy(),
        };

        // Select worker using the policy
        let idx = policy.select_worker(&available, text)?;
        Some(available[idx].clone())
    }
310
311
312
313
314
315
316
317
318
319
320
321

    /// Process chat messages and apply template
    fn process_chat_messages(
        &self,
        request: &ChatCompletionRequest,
    ) -> Result<ProcessedMessages, String> {
        // Use the tokenizer's chat template - we require HuggingFace tokenizer for gRPC
        let formatted_text = if let Some(hf_tokenizer) =
            self.tokenizer
                .as_any()
                .downcast_ref::<crate::tokenizer::HuggingFaceTokenizer>()
        {
322
323
            // Get content format and transform messages accordingly
            let content_format = hf_tokenizer.chat_template_content_format();
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
            let mut transformed_messages =
                Self::process_content_format(&request.messages, content_format)?;

            // Process tool call arguments in assistant messages
            Self::process_tool_call_arguments(&mut transformed_messages)?;

            // Convert tools to JSON values for template processing
            let tools_json: Option<Vec<serde_json::Value>> = request
                .tools
                .as_ref()
                .map(|tools| {
                    tools
                        .iter()
                        .map(serde_json::to_value)
                        .collect::<Result<Vec<_>, _>>()
                })
                .transpose()
                .map_err(|e| format!("Failed to serialize tools: {}", e))?;

            // Build template kwargs, merging reasoning_effort if present
            let mut combined_template_kwargs = std::collections::HashMap::new();

            // Add reasoning_effort if present (like Python does)
            if let Some(reasoning_effort) = &request.reasoning_effort {
                combined_template_kwargs.insert(
                    "reasoning_effort".to_string(),
                    serde_json::Value::String(reasoning_effort.clone()),
                );
            }

            // Add any additional template kwargs from request
            if let Some(template_kwargs) = &request.chat_template_kwargs {
                for (key, value) in template_kwargs {
                    combined_template_kwargs.insert(key.clone(), value.clone());
                }
            }

            let final_template_kwargs = if combined_template_kwargs.is_empty() {
                None
            } else {
                Some(&combined_template_kwargs)
            };

            let params = ChatTemplateParams {
                add_generation_prompt: true,
                continue_final_message: request.continue_final_message,
                tools: tools_json.as_deref(),
                template_kwargs: final_template_kwargs,
                ..Default::default()
            };

            // Handle assistant prefix for continue_final_message
            let assistant_prefix = if request.continue_final_message
                && !transformed_messages.is_empty()
                && transformed_messages
                    .last()
                    .and_then(|msg| msg.get("role"))
                    .and_then(|v| v.as_str())
                    == Some("assistant")
            {
                // Pop the last message to handle it separately
                let last_msg = transformed_messages.pop().unwrap();
                last_msg
                    .get("content")
                    .and_then(|v| v.as_str())
                    .map(|s| s.to_string())
            } else {
                None
            };

            // Apply chat template with the (now possibly shorter) list of messages
            let rendered = hf_tokenizer
                .apply_chat_template(&transformed_messages, params)
                .map_err(|e| format!("Failed to apply chat template: {}", e))?;
398

399
400
401
402
403
404
            // Append assistant prefix if we have one
            if let Some(prefix) = assistant_prefix {
                format!("{}{}", rendered, prefix)
            } else {
                rendered
            }
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        } else {
            return Err(
                "gRPC router requires HuggingFace tokenizer with chat template support".to_string(),
            );
        };

        // Placeholder for multimodal inputs
        let multimodal_inputs = None;

        Ok(ProcessedMessages {
            text: formatted_text,
            multimodal_inputs,
            stop_sequences: request.stop.clone(),
        })
    }

421
422
    /// Process messages based on content format for ANY message type
    fn process_content_format(
423
424
425
426
427
428
429
430
431
432
433
434
435
        messages: &[crate::protocols::spec::ChatMessage],
        content_format: crate::tokenizer::chat_template::ChatTemplateContentFormat,
    ) -> Result<Vec<serde_json::Value>, String> {
        messages
            .iter()
            .map(|message| {
                let mut message_json = serde_json::to_value(message)
                    .map_err(|e| format!("Failed to serialize message: {}", e))?;

                if let Some(obj) = message_json.as_object_mut() {
                    if let Some(content_value) = obj.get_mut("content") {
                        Self::transform_content_field(content_value, content_format);
                    }
436
                }
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

                Ok(message_json)
            })
            .collect()
    }

    /// Transform a single content field based on content format
    fn transform_content_field(
        content_value: &mut Value,
        content_format: ChatTemplateContentFormat,
    ) {
        let Some(content_array) = content_value.as_array() else {
            return; // Not multimodal, keep as-is
        };

        match content_format {
            ChatTemplateContentFormat::String => {
                // Extract and join text parts only
                let text_parts: Vec<String> = content_array
                    .iter()
                    .filter_map(|part| {
                        part.as_object()?
                            .get("type")?
                            .as_str()
                            .filter(|&t| t == "text")
                            .and_then(|_| part.as_object()?.get("text")?.as_str())
                            .map(String::from)
                    })
                    .collect();

                if !text_parts.is_empty() {
                    *content_value = Value::String(text_parts.join(" "));
469
                }
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
            }
            ChatTemplateContentFormat::OpenAI => {
                // Replace media URLs with simple type placeholders
                let processed_parts: Vec<Value> = content_array
                    .iter()
                    .map(|part| {
                        part.as_object()
                            .and_then(|obj| obj.get("type")?.as_str())
                            .and_then(|type_str| match type_str {
                                "image_url" => Some(serde_json::json!({"type": "image"})),
                                "video_url" => Some(serde_json::json!({"type": "video"})),
                                "audio_url" => Some(serde_json::json!({"type": "audio"})),
                                _ => None,
                            })
                            .unwrap_or_else(|| part.clone())
                    })
                    .collect();
487

488
489
490
                *content_value = Value::Array(processed_parts);
            }
        }
491
492
    }

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    /// Process tool call arguments in messages
    /// Per Transformers docs, tool call arguments in assistant messages should be dicts
    fn process_tool_call_arguments(messages: &mut [serde_json::Value]) -> Result<(), String> {
        for msg in messages {
            // Early return if not assistant message
            let role = msg.get("role").and_then(|v| v.as_str());
            if role != Some("assistant") {
                continue;
            }

            // Early return if no tool_calls
            let Some(tool_calls) = msg.get_mut("tool_calls").and_then(|tc| tc.as_array_mut())
            else {
                continue;
            };

            // Process each tool call's arguments
            for call in tool_calls {
                let Some(function) = call.get_mut("function") else {
                    continue;
                };
                let Some(args) = function.get_mut("arguments") else {
                    continue;
                };
                let Some(args_str) = args.as_str() else {
                    continue;
                };

                // Parse JSON string to object (like Python json.loads)
                match serde_json::from_str::<serde_json::Value>(args_str) {
                    Ok(parsed) => *args = parsed,
                    Err(e) => {
                        return Err(format!(
                            "Failed to parse tool call arguments as JSON: '{}'. Error: {}",
                            args_str, e
                        ))
                    }
                }
            }
        }
        Ok(())
    }

536
537
538
539
540
541
    /// Generate tool constraints for structured generation
    fn generate_tool_constraints(
        &self,
        _tools: &[crate::protocols::spec::Tool],
        _tool_choice: &Option<crate::protocols::spec::ToolChoice>,
        model: &str,
542
    ) -> Option<(String, String)> {
543
        let _parser = self.tool_parser_registry.get_parser(model)?;
544
545
        // TODO: Implement actual constraint generation logic
        // For now, return None as this is placeholder implementation
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        None
    }

    /// Placeholder for streaming handler (to be implemented in Phase 2)
    async fn handle_streaming_chat(
        &self,
        _client: SglangSchedulerClient,
        _request: proto::GenerateRequest,
        _original_request: &ChatCompletionRequest,
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED, "Streaming not yet implemented").into_response()
    }

    /// Placeholder for non-streaming handler (to be implemented in Phase 3)
    async fn handle_non_streaming_chat(
        &self,
        _client: SglangSchedulerClient,
        _request: proto::GenerateRequest,
        _original_request: &ChatCompletionRequest,
    ) -> Response {
        (
            StatusCode::NOT_IMPLEMENTED,
            "Non-streaming not yet implemented",
        )
            .into_response()
    }
572
573
574
575
}

impl std::fmt::Debug for GrpcRouter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
576
        let stats = self.worker_registry.stats();
577
        f.debug_struct("GrpcRouter")
578
            .field("workers_count", &stats.total_workers)
579
580
581
582
            .field("timeout_secs", &self.timeout_secs)
            .field("interval_secs", &self.interval_secs)
            .field("dp_aware", &self.dp_aware)
            .finish()
583
584
585
586
587
588
589
590
591
592
    }
}

#[async_trait]
impl RouterTrait for GrpcRouter {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    async fn health_generate(&self, _req: Request<Body>) -> Response {
593
594
595
596
597
598
        // TODO: Implement actual generation test for gRPC
        (
            StatusCode::NOT_IMPLEMENTED,
            "Health generate not yet implemented for gRPC",
        )
            .into_response()
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
    }

    async fn get_server_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_models(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_model_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn route_generate(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &crate::protocols::spec::GenerateRequest,
617
        _model_id: Option<&str>,
618
619
620
621
622
623
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn route_chat(
        &self,
624
625
626
        headers: Option<&HeaderMap>,
        body: &crate::protocols::spec::ChatCompletionRequest,
        model_id: Option<&str>,
627
    ) -> Response {
628
        self.route_chat_impl(headers, body, model_id).await
629
630
631
632
633
634
    }

    async fn route_completion(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &crate::protocols::spec::CompletionRequest,
635
        _model_id: Option<&str>,
636
637
638
639
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

640
641
642
643
    async fn route_responses(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &crate::protocols::spec::ResponsesRequest,
644
        _model_id: Option<&str>,
645
646
647
648
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

649
650
651
652
653
654
    async fn get_response(
        &self,
        _headers: Option<&HeaderMap>,
        _response_id: &str,
        _params: &crate::protocols::spec::ResponsesGetParams,
    ) -> Response {
655
656
657
658
659
660
661
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn cancel_response(&self, _headers: Option<&HeaderMap>, _response_id: &str) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

662
663
664
665
666
667
    async fn route_embeddings(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &crate::protocols::spec::EmbeddingRequest,
        _model_id: Option<&str>,
    ) -> Response {
668
669
670
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

671
672
673
674
    async fn route_rerank(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &crate::protocols::spec::RerankRequest,
675
        _model_id: Option<&str>,
676
    ) -> Response {
677
678
679
680
681
682
683
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    fn router_type(&self) -> &'static str {
        "grpc"
    }
}
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

#[cfg(test)]
mod tests {
    use super::*;
    use crate::protocols::spec::{ChatMessage, ContentPart, ImageUrl, UserMessageContent};
    use crate::tokenizer::chat_template::ChatTemplateContentFormat;
    use serde_json::json;

    #[test]
    fn test_transform_messages_string_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Hello".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: None,
                    },
                },
                ContentPart::Text {
                    text: "World".to_string(),
                },
            ]),
            name: None,
        }];

713
714
715
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should flatten multimodal content to text only
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Hello World"
        );
        assert_eq!(transformed_message["role"].as_str().unwrap(), "user");
    }

    #[test]
    fn test_transform_messages_openai_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Describe this image:".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: Some("high".to_string()),
                    },
                },
            ]),
            name: None,
        }];

746
747
748
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should replace media URLs with simple type placeholders
        let content_array = transformed_message["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);

        // Text part should remain unchanged
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[0]["text"], "Describe this image:");

        // Image part should be replaced with simple type placeholder
        assert_eq!(content_array[1], json!({"type": "image"}));
    }

    #[test]
    fn test_transform_messages_simple_string_content() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Text("Simple text message".to_string()),
            name: None,
        }];

773
774
775
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Simple string content should remain unchanged
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Simple text message"
        );
    }

    #[test]
    fn test_transform_messages_assistant_message() {
        let messages = vec![ChatMessage::Assistant {
            role: "assistant".to_string(),
            content: Some("Assistant response".to_string()),
            name: None,
            tool_calls: None,
            function_call: None,
            reasoning_content: None,
        }];

798
799
800
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        assert_eq!(transformed_message["role"].as_str().unwrap(), "assistant");
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Assistant response"
        );
    }

    #[test]
    fn test_transform_messages_multiple_messages() {
        let messages = vec![
            ChatMessage::System {
                role: "system".to_string(),
                content: "System prompt".to_string(),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "User message".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: None,
                        },
                    },
                ]),
                name: None,
            },
        ];

837
838
839
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

        assert_eq!(result.len(), 2);

        // System message should remain unchanged
        assert_eq!(result[0]["role"].as_str().unwrap(), "system");
        assert_eq!(result[0]["content"].as_str().unwrap(), "System prompt");

        // User message should be flattened to text only
        assert_eq!(result[1]["role"].as_str().unwrap(), "user");
        assert_eq!(result[1]["content"].as_str().unwrap(), "User message");
    }

    #[test]
    fn test_transform_messages_empty_text_parts() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![ContentPart::ImageUrl {
                image_url: ImageUrl {
                    url: "https://example.com/image.jpg".to_string(),
                    detail: None,
                },
            }]),
            name: None,
        }];

865
866
867
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should keep original multimodal content when no text parts exist
        assert!(transformed_message["content"].is_array());
    }

    #[test]
    fn test_transform_messages_mixed_content_types() {
        // Test with both text and multimodal content
        let messages = vec![
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Text("Plain text".to_string()),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "With image".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: Some("low".to_string()),
                        },
                    },
                ]),
                name: None,
            },
        ];

        // Test String format
903
904
905
        let result_string =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
906
907
908
909
910
911

        assert_eq!(result_string.len(), 2);
        assert_eq!(result_string[0]["content"].as_str().unwrap(), "Plain text");
        assert_eq!(result_string[1]["content"].as_str().unwrap(), "With image");

        // Test OpenAI format
912
913
914
        let result_openai =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
915
916
917
918
919
920
921
922
923
924

        assert_eq!(result_openai.len(), 2);
        assert_eq!(result_openai[0]["content"].as_str().unwrap(), "Plain text");

        let content_array = result_openai[1]["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[1], json!({"type": "image"}));
    }
}