router.rs 55.5 KB
Newer Older
1
2
// gRPC Router Implementation

3
4
5
6
7
8
9
10
use std::sync::Arc;

use async_trait::async_trait;
use axum::{
    body::Body,
    extract::Request,
    http::{HeaderMap, StatusCode},
    response::{IntoResponse, Response},
11
    Json,
12
13
14
};
use tracing::{debug, error, info, warn};

15
use crate::config::types::RetryConfig;
16
use crate::core::{ConnectionMode, Worker, WorkerRegistry, WorkerType};
17
use crate::grpc_client::{proto, SglangSchedulerClient};
18
use crate::metrics::RouterMetrics;
19
use crate::policies::PolicyRegistry;
20
21
use crate::protocols::spec::ChatMessage;
use crate::protocols::spec::{
22
23
24
    ChatChoice, ChatCompletionMessage, ChatCompletionRequest, ChatCompletionResponse,
    CompletionRequest, EmbeddingRequest, GenerateRequest, RerankRequest, ResponsesGetParams,
    ResponsesRequest, StringOrArray, Tool, ToolChoice, Usage,
25
};
26
use crate::reasoning_parser::ParserFactory;
27
use crate::routers::RouterTrait;
28
29
use crate::server::AppContext;
use crate::tokenizer::chat_template::{ChatTemplateContentFormat, ChatTemplateParams};
30
31
32
use crate::tokenizer::stop::{
    SequenceDecoderOutput, StopSequenceDecoder, StopSequenceDecoderBuilder,
};
33
use crate::tokenizer::traits::Tokenizer;
34
use crate::tokenizer::HuggingFaceTokenizer;
35
use crate::tool_parser::ParserRegistry;
36
37
38
use proto::generate_response::Response::{Chunk, Complete, Error};
use serde_json::{json, Value};
use std::time::{Instant, SystemTime, UNIX_EPOCH};
39
use tokio_stream::StreamExt;
40
use uuid::Uuid;
41

42
43
44
45
46
47
48
// Data structures for processing
#[derive(Debug)]
pub struct ProcessedMessages {
    pub text: String,
    pub multimodal_inputs: Option<proto::MultimodalInputs>,
    pub stop_sequences: Option<StringOrArray>,
}
49

50
/// gRPC router implementation for SGLang
51
#[allow(dead_code)]
52
pub struct GrpcRouter {
53
54
    worker_registry: Arc<WorkerRegistry>,
    policy_registry: Arc<PolicyRegistry>,
55
56
57
58
59
60
61
    tokenizer: Arc<dyn Tokenizer>,
    reasoning_parser_factory: ParserFactory,
    tool_parser_registry: &'static ParserRegistry,
    dp_aware: bool,
    api_key: Option<String>,
    retry_config: RetryConfig,
}
62
63

impl GrpcRouter {
64
    /// Create a new gRPC router
65
    pub async fn new(ctx: &Arc<AppContext>) -> Result<Self, String> {
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        // Extract necessary components from context
        let tokenizer = ctx
            .tokenizer
            .as_ref()
            .ok_or_else(|| "gRPC router requires tokenizer".to_string())?
            .clone();
        let reasoning_parser_factory = ctx
            .reasoning_parser_factory
            .as_ref()
            .ok_or_else(|| "gRPC router requires reasoning parser factory".to_string())?
            .clone();
        let tool_parser_registry = ctx
            .tool_parser_registry
            .ok_or_else(|| "gRPC router requires tool parser registry".to_string())?;

81
82
        let worker_registry = ctx.worker_registry.clone();
        let policy_registry = ctx.policy_registry.clone();
Chang Su's avatar
Chang Su committed
83

84
        let workers = worker_registry.get_workers_filtered(
85
            None,
86
            Some(WorkerType::Regular),
87
            Some(ConnectionMode::Grpc { port: None }),
88
            false,
89
90
        );

91
92
        RouterMetrics::set_active_workers(workers.len());
        info!("gRPC router found {} workers in registry", workers.len());
93
94

        Ok(GrpcRouter {
95
96
            worker_registry,
            policy_registry,
97
98
99
            tokenizer,
            reasoning_parser_factory,
            tool_parser_registry,
100
101
102
            dp_aware: ctx.router_config.dp_aware,
            api_key: ctx.router_config.api_key.clone(),
            retry_config: ctx.router_config.effective_retry_config(),
103
104
        })
    }
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

    /// Main route_chat implementation
    async fn route_chat_impl(
        &self,
        _headers: Option<&HeaderMap>,
        body: &ChatCompletionRequest,
        model_id: Option<&str>,
    ) -> Response {
        debug!(
            "Processing chat completion request for model: {:?}",
            model_id
        );

        // Step 1: Select worker (fail fast if no workers available)
        let worker = match self.select_worker_for_request(model_id, None) {
            Some(w) => w,
            None => {
                warn!("No available workers for model: {:?}", model_id);
                return (StatusCode::SERVICE_UNAVAILABLE, "No available workers").into_response();
            }
        };

        debug!("Selected worker: {}", worker.url());

129
        // Step 2: Get gRPC client from worker
130
131
132
        let client = match Self::get_grpc_client_from_worker(&worker).await {
            Ok(client) => client,
            Err(response) => return response,
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        };

        // Step 3: Process messages and apply chat template
        let processed_messages = match self.process_chat_messages(body) {
            Ok(msgs) => msgs,
            Err(e) => {
                error!("Failed to process chat messages: {}", e);
                return (StatusCode::BAD_REQUEST, e.to_string()).into_response();
            }
        };

        // Step 4: Tokenize the processed text
        let encoding = match self.tokenizer.encode(&processed_messages.text) {
            Ok(encoding) => encoding,
            Err(e) => {
                error!("Tokenization failed: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Tokenization failed: {}", e),
                )
                    .into_response();
            }
        };

        let token_ids = encoding.token_ids().to_vec();
        debug!("Tokenized {} tokens from input", token_ids.len());

        // Step 5: Build tool constraints if needed
161
        let tool_call_constraint = if let Some(tools) = &body.tools {
162
163
164
165
166
            self.generate_tool_constraints(tools, &body.tool_choice, &body.model)
        } else {
            None
        };

167
168
        // Step 6: Build the base gRPC request
        let request_id = format!("chatcmpl-{}", Uuid::new_v4());
169
        let request = match client.build_generate_request(
170
171
172
            request_id,
            body,
            processed_messages.text.clone(),
173
            token_ids,
174
175
176
177
            processed_messages.multimodal_inputs,
            tool_call_constraint, // Pass the full tuple (type, value)
        ) {
            Ok(request) => request,
178
            Err(e) => {
179
                error!("Failed to build gRPC request: {}", e);
180
181
                return (
                    StatusCode::BAD_REQUEST,
182
                    format!("Invalid request parameters: {}", e),
183
184
185
186
187
                )
                    .into_response();
            }
        };

188
        // Step 7: Handle streaming vs non-streaming
189
        if body.stream {
190
            self.handle_streaming_chat(client, request, body).await
191
        } else {
192
            self.handle_non_streaming_chat(client, request, body).await
193
194
195
        }
    }

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    /// Main route_generate implementation
    async fn route_generate_impl(
        &self,
        _headers: Option<&HeaderMap>,
        body: &GenerateRequest,
        model_id: Option<&str>,
    ) -> Response {
        debug!("Processing generate request for model: {:?}", model_id);

        // Step 1: Resolve input (text, prompt, or input_ids)
        let (original_text, token_ids) = match self.resolve_generate_input(body) {
            Ok(res) => res,
            Err(msg) => {
                error!("Invalid generate request: {}", msg);
                return (StatusCode::BAD_REQUEST, msg).into_response();
            }
        };

        debug!("Resolved input with {} tokens", token_ids.len());

        // Step 2: Select worker (fail fast if no workers available)
        let worker = match self.select_worker_for_request(model_id, original_text.as_deref()) {
            Some(w) => w,
            None => {
                warn!("No available workers for model: {:?}", model_id);
                return (StatusCode::SERVICE_UNAVAILABLE, "No available workers").into_response();
            }
        };

        debug!("Selected worker: {}", worker.url());

        // Step 3: Get gRPC client from worker
        let client = match Self::get_grpc_client_from_worker(&worker).await {
            Ok(client) => client,
            Err(response) => return response,
        };

        // Step 4: Build the gRPC request
        let request_id = body
            .rid
            .clone()
            .unwrap_or_else(|| format!("gen-{}", Uuid::new_v4()));

        let request = match client.build_plain_generate_request(
            request_id.clone(),
            body,
            original_text.clone(),
            token_ids,
        ) {
            Ok(req) => req,
            Err(e) => {
                error!("Failed to build generate request: {}", e);
                return (StatusCode::BAD_REQUEST, e).into_response();
            }
        };

        // Step 5: Get weight version for response metadata
        let weight_version = worker
            .metadata()
            .labels
            .get("weight_version")
            .cloned()
            .unwrap_or_else(|| "default".to_string());

        // Step 6: Handle streaming vs non-streaming
        if body.stream {
            // TODO: Implement streaming support for generate endpoint
            return (
                StatusCode::NOT_IMPLEMENTED,
                "Streaming generate over gRPC is not supported yet",
            )
                .into_response();
        }

        self.handle_non_streaming_generate(client, request, body, request_id, weight_version)
            .await
    }

    /// Get gRPC client from worker, returning appropriate error response on failure
    async fn get_grpc_client_from_worker(
        worker: &Arc<dyn Worker>,
    ) -> Result<SglangSchedulerClient, Response> {
        let client_arc = worker
            .get_grpc_client()
            .await
            .map_err(|e| {
                error!("Failed to get gRPC client from worker: {}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Failed to get gRPC client: {}", e),
                )
                    .into_response()
            })?
            .ok_or_else(|| {
                error!("Selected worker is not a gRPC worker");
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    "Selected worker is not configured for gRPC",
                )
                    .into_response()
            })?;

        let client = client_arc.lock().await.clone();
        Ok(client)
    }

302
303
304
305
306
    /// Select a worker for the request
    fn select_worker_for_request(
        &self,
        model_id: Option<&str>,
        text: Option<&str>,
307
    ) -> Option<Arc<dyn Worker>> {
308
309
310
311
        // Get workers for the specified model, filtered by connection mode
        let workers = self.worker_registry.get_workers_filtered(
            model_id,
            Some(WorkerType::Regular),
312
            Some(ConnectionMode::Grpc { port: None }),
313
314
315
316
            false, // get all workers, we'll filter by is_available() next
        );

        // Filter by availability (health + circuit breaker)
317
        let available: Vec<Arc<dyn Worker>> = workers
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
            .iter()
            .filter(|w| w.is_available())
            .cloned()
            .collect();

        if available.is_empty() {
            return None;
        }

        // Get the appropriate policy for this model
        let policy = match model_id {
            Some(model) => self.policy_registry.get_policy_or_default(model),
            None => self.policy_registry.get_default_policy(),
        };

        // Select worker using the policy
        let idx = policy.select_worker(&available, text)?;
        Some(available[idx].clone())
    }
337
338
339
340
341
342
343

    /// Process chat messages and apply template
    fn process_chat_messages(
        &self,
        request: &ChatCompletionRequest,
    ) -> Result<ProcessedMessages, String> {
        // Use the tokenizer's chat template - we require HuggingFace tokenizer for gRPC
344
345
346
347
        let formatted_text = if let Some(hf_tokenizer) = self
            .tokenizer
            .as_any()
            .downcast_ref::<HuggingFaceTokenizer>()
348
        {
349
350
            // Get content format and transform messages accordingly
            let content_format = hf_tokenizer.chat_template_content_format();
351
352
353
354
355
356
357
            let mut transformed_messages =
                Self::process_content_format(&request.messages, content_format)?;

            // Process tool call arguments in assistant messages
            Self::process_tool_call_arguments(&mut transformed_messages)?;

            // Convert tools to JSON values for template processing
358
            let tools_json: Option<Vec<Value>> = request
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
                .tools
                .as_ref()
                .map(|tools| {
                    tools
                        .iter()
                        .map(serde_json::to_value)
                        .collect::<Result<Vec<_>, _>>()
                })
                .transpose()
                .map_err(|e| format!("Failed to serialize tools: {}", e))?;

            // Build template kwargs, merging reasoning_effort if present
            let mut combined_template_kwargs = std::collections::HashMap::new();

            // Add reasoning_effort if present (like Python does)
            if let Some(reasoning_effort) = &request.reasoning_effort {
                combined_template_kwargs.insert(
                    "reasoning_effort".to_string(),
377
                    Value::String(reasoning_effort.clone()),
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
                );
            }

            // Add any additional template kwargs from request
            if let Some(template_kwargs) = &request.chat_template_kwargs {
                for (key, value) in template_kwargs {
                    combined_template_kwargs.insert(key.clone(), value.clone());
                }
            }

            let final_template_kwargs = if combined_template_kwargs.is_empty() {
                None
            } else {
                Some(&combined_template_kwargs)
            };

            let params = ChatTemplateParams {
                add_generation_prompt: true,
                continue_final_message: request.continue_final_message,
                tools: tools_json.as_deref(),
                template_kwargs: final_template_kwargs,
                ..Default::default()
            };

            // Handle assistant prefix for continue_final_message
            let assistant_prefix = if request.continue_final_message
                && !transformed_messages.is_empty()
                && transformed_messages
                    .last()
                    .and_then(|msg| msg.get("role"))
                    .and_then(|v| v.as_str())
                    == Some("assistant")
            {
                // Pop the last message to handle it separately
                let last_msg = transformed_messages.pop().unwrap();
                last_msg
                    .get("content")
                    .and_then(|v| v.as_str())
                    .map(|s| s.to_string())
            } else {
                None
            };

            // Apply chat template with the (now possibly shorter) list of messages
            let rendered = hf_tokenizer
                .apply_chat_template(&transformed_messages, params)
                .map_err(|e| format!("Failed to apply chat template: {}", e))?;
425

426
427
428
429
430
431
            // Append assistant prefix if we have one
            if let Some(prefix) = assistant_prefix {
                format!("{}{}", rendered, prefix)
            } else {
                rendered
            }
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        } else {
            return Err(
                "gRPC router requires HuggingFace tokenizer with chat template support".to_string(),
            );
        };

        // Placeholder for multimodal inputs
        let multimodal_inputs = None;

        Ok(ProcessedMessages {
            text: formatted_text,
            multimodal_inputs,
            stop_sequences: request.stop.clone(),
        })
    }

448
449
    /// Process messages based on content format for ANY message type
    fn process_content_format(
450
451
452
        messages: &[ChatMessage],
        content_format: ChatTemplateContentFormat,
    ) -> Result<Vec<Value>, String> {
453
454
455
456
457
458
459
460
461
462
        messages
            .iter()
            .map(|message| {
                let mut message_json = serde_json::to_value(message)
                    .map_err(|e| format!("Failed to serialize message: {}", e))?;

                if let Some(obj) = message_json.as_object_mut() {
                    if let Some(content_value) = obj.get_mut("content") {
                        Self::transform_content_field(content_value, content_format);
                    }
463
                }
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

                Ok(message_json)
            })
            .collect()
    }

    /// Transform a single content field based on content format
    fn transform_content_field(
        content_value: &mut Value,
        content_format: ChatTemplateContentFormat,
    ) {
        let Some(content_array) = content_value.as_array() else {
            return; // Not multimodal, keep as-is
        };

        match content_format {
            ChatTemplateContentFormat::String => {
                // Extract and join text parts only
                let text_parts: Vec<String> = content_array
                    .iter()
                    .filter_map(|part| {
                        part.as_object()?
                            .get("type")?
                            .as_str()
                            .filter(|&t| t == "text")
                            .and_then(|_| part.as_object()?.get("text")?.as_str())
                            .map(String::from)
                    })
                    .collect();

                if !text_parts.is_empty() {
                    *content_value = Value::String(text_parts.join(" "));
496
                }
497
498
499
500
501
502
503
504
505
            }
            ChatTemplateContentFormat::OpenAI => {
                // Replace media URLs with simple type placeholders
                let processed_parts: Vec<Value> = content_array
                    .iter()
                    .map(|part| {
                        part.as_object()
                            .and_then(|obj| obj.get("type")?.as_str())
                            .and_then(|type_str| match type_str {
506
507
508
                                "image_url" => Some(json!({"type": "image"})),
                                "video_url" => Some(json!({"type": "video"})),
                                "audio_url" => Some(json!({"type": "audio"})),
509
510
511
512
513
                                _ => None,
                            })
                            .unwrap_or_else(|| part.clone())
                    })
                    .collect();
514

515
516
517
                *content_value = Value::Array(processed_parts);
            }
        }
518
519
    }

520
521
    /// Process tool call arguments in messages
    /// Per Transformers docs, tool call arguments in assistant messages should be dicts
522
    fn process_tool_call_arguments(messages: &mut [Value]) -> Result<(), String> {
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
        for msg in messages {
            // Early return if not assistant message
            let role = msg.get("role").and_then(|v| v.as_str());
            if role != Some("assistant") {
                continue;
            }

            // Early return if no tool_calls
            let Some(tool_calls) = msg.get_mut("tool_calls").and_then(|tc| tc.as_array_mut())
            else {
                continue;
            };

            // Process each tool call's arguments
            for call in tool_calls {
                let Some(function) = call.get_mut("function") else {
                    continue;
                };
                let Some(args) = function.get_mut("arguments") else {
                    continue;
                };
                let Some(args_str) = args.as_str() else {
                    continue;
                };

                // Parse JSON string to object (like Python json.loads)
549
                match serde_json::from_str::<Value>(args_str) {
550
551
552
553
554
555
556
557
558
559
560
561
562
                    Ok(parsed) => *args = parsed,
                    Err(e) => {
                        return Err(format!(
                            "Failed to parse tool call arguments as JSON: '{}'. Error: {}",
                            args_str, e
                        ))
                    }
                }
            }
        }
        Ok(())
    }

563
564
565
    /// Generate tool constraints for structured generation
    fn generate_tool_constraints(
        &self,
566
567
        _tools: &[Tool],
        _tool_choice: &Option<ToolChoice>,
568
        model: &str,
569
    ) -> Option<(String, String)> {
570
        let _parser = self.tool_parser_registry.get_parser(model)?;
571
572
        // TODO: Implement actual constraint generation logic
        // For now, return None as this is placeholder implementation
573
574
575
        None
    }

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    /// Resolve the generate input into optional original text and token IDs
    fn resolve_generate_input(
        &self,
        request: &GenerateRequest,
    ) -> Result<(Option<String>, Vec<u32>), String> {
        if let Some(text) = &request.text {
            return self
                .tokenize_single_text(text)
                .map(|(original, ids)| (Some(original), ids));
        }

        // Handle input_ids - validate and convert
        if let Some(input_ids) = &request.input_ids {
            return match input_ids {
                crate::protocols::spec::InputIds::Single(ids) => ids
                    .iter()
                    .map(|&id| u32::try_from(id))
                    .collect::<Result<Vec<u32>, _>>()
                    .map(|converted| (None, converted))
                    .map_err(|_| "input_ids must be non-negative".to_string()),
                crate::protocols::spec::InputIds::Batch(_) => {
                    Err("Batch input_ids are not supported over gRPC generate yet".to_string())
                }
            };
        }

        Err("Either `text` or `input_ids` must be provided".to_string())
    }

    fn tokenize_single_text(&self, text: &str) -> Result<(String, Vec<u32>), String> {
        let encoding = self
            .tokenizer
            .encode(text)
            .map_err(|e| format!("Tokenization failed: {}", e))?;
        Ok((text.to_string(), encoding.token_ids().to_vec()))
    }

    fn internal_error_static(msg: &'static str) -> Response {
        error!("{}", msg);
        (StatusCode::INTERNAL_SERVER_ERROR, msg).into_response()
    }

    fn internal_error_message(message: String) -> Response {
        error!("{}", message);
        (StatusCode::INTERNAL_SERVER_ERROR, message).into_response()
    }

    /// Create a StopSequenceDecoder from stop parameters
624
625
    fn create_stop_decoder(
        &self,
626
627
628
629
630
631
632
        stop: Option<&StringOrArray>,
        stop_token_ids: Option<&Vec<u32>>,
        skip_special_tokens: bool,
        no_stop_trim: bool,
    ) -> StopSequenceDecoder {
        // Extract stop sequences
        let stop_sequences: Vec<String> = match stop {
633
634
635
636
637
638
639
            Some(StringOrArray::String(s)) => vec![s.clone()],
            Some(StringOrArray::Array(arr)) => arr.clone(),
            None => vec![],
        };

        // Build stop sequence decoder
        let mut builder = StopSequenceDecoderBuilder::new(self.tokenizer.clone())
640
            .skip_special_tokens(skip_special_tokens);
641
642
643

        // Add stop sequences (visible if no_stop_trim is true, hidden otherwise)
        for seq in stop_sequences {
644
            builder = if no_stop_trim {
645
646
647
648
649
650
651
                builder.visible_stop_sequence(seq)
            } else {
                builder.stop_sequence(seq)
            };
        }

        // Add stop token IDs (visible if no_stop_trim is true, hidden otherwise)
652
653
654
        if let Some(token_ids) = stop_token_ids {
            for &token_id in token_ids {
                builder = if no_stop_trim {
655
656
657
658
659
660
661
662
663
664
665
666
                    builder.visible_stop_token(token_id)
                } else {
                    builder.stop_token(token_id)
                };
            }
        }

        builder.build()
    }

    /// Process a chunk of tokens through the stop decoder
    fn process_chunk_tokens(
667
        stop_decoder: &mut StopSequenceDecoder,
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        token_ids: &[u32],
    ) -> (String, bool) {
        let mut chunk_text = String::new();

        for &token_id in token_ids {
            match stop_decoder.process_token(token_id).unwrap_or_else(|e| {
                debug!(
                    "Error processing token {}: {}. Treating as Held.",
                    token_id, e
                );
                SequenceDecoderOutput::Held
            }) {
                SequenceDecoderOutput::Text(text) => {
                    chunk_text.push_str(&text);
                }
                SequenceDecoderOutput::StoppedWithText(text) => {
                    chunk_text.push_str(&text);
                    return (chunk_text, true); // Return text and signal to stop
                }
                SequenceDecoderOutput::Stopped => {
                    return (chunk_text, true); // Return text and signal to stop
                }
                SequenceDecoderOutput::Held => {
                    // Text held for potential stop sequence match
                }
            }
        }
        (chunk_text, false) // Return text and continue processing
    }

    /// Submit request and handle streaming response for chat completions route
699
700
    async fn handle_streaming_chat(
        &self,
701
702
703
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &ChatCompletionRequest,
704
    ) -> Response {
705
706
707
708
709
710
        let mut stop_decoder = self.create_stop_decoder(
            original_request.stop.as_ref(),
            original_request.stop_token_ids.as_ref(),
            original_request.skip_special_tokens,
            original_request.no_stop_trim,
        );
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

        // Process streaming tokens
        let mut grpc_stream = match client.generate(request).await {
            Ok(stream) => stream,
            Err(e) => {
                error!("Failed to start generation: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Generation failed: {}", e),
                )
                    .into_response();
            }
        };

        let mut decoded_text = String::new();

        while let Some(response) = grpc_stream.next().await {
            let gen_response = match response {
                Ok(resp) => resp,
                Err(e) => {
                    error!("Stream error: {}", e);
                    break;
                }
            };

            match gen_response.response {
737
                Some(Chunk(chunk)) => {
738
739
740
741
742
743
744
745
746
                    // Process tokens and check if we should stop
                    let (chunk_text, should_stop) =
                        Self::process_chunk_tokens(&mut stop_decoder, &chunk.token_ids);
                    decoded_text.push_str(&chunk_text);
                    if should_stop {
                        break;
                    }
                    continue;
                }
747
                Some(Complete(_complete)) => {
748
749
750
751
752
753
754
755
756
                    // Flush any remaining text
                    if let SequenceDecoderOutput::Text(text) = stop_decoder.flush() {
                        if !text.is_empty() {
                            decoded_text.push_str(&text);
                            debug!("Flushed text: {}", text);
                        }
                    }
                    break;
                }
757
                Some(Error(error)) => {
758
759
760
761
762
763
764
765
766
767
                    error!("Generation error: {}", error.message);
                    break;
                }
                None => continue,
            }
        }

        // TODO: Replace with proper SSE streaming response
        // For now, return the complete decoded text
        (StatusCode::OK, format!("Decoded text: {}", decoded_text)).into_response()
768
769
    }

770
    /// Submit request and handle non-streaming response for chat completions route
771
772
    async fn handle_non_streaming_chat(
        &self,
773
774
775
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &ChatCompletionRequest,
776
    ) -> Response {
777
778
779
780
781
782
        let mut stop_decoder = self.create_stop_decoder(
            original_request.stop.as_ref(),
            original_request.stop_token_ids.as_ref(),
            original_request.skip_special_tokens,
            original_request.no_stop_trim,
        );
783
784
785
786

        // Start generation
        let mut stream = match client.generate(request).await {
            Ok(s) => s,
787
788
789
            Err(e) => {
                return Self::internal_error_message(format!("Failed to start generation: {}", e))
            }
790
791
        };

792
793
794
795
796
        // Collect all responses (for n>1 support)
        let mut all_responses = Vec::new();
        while let Some(response) = stream.next().await {
            match response {
                Ok(gen_response) => match gen_response.response {
797
                    Some(Complete(complete)) => {
798
799
                        all_responses.push(complete);
                    }
800
801
802
803
804
                    Some(Error(err)) => {
                        return Self::internal_error_message(format!(
                            "Generation failed: {}",
                            err.message
                        ));
805
                    }
806
807
808
809
                    Some(Chunk(_)) => {
                        return Self::internal_error_static(
                            "Unexpected chunk response for non-streaming request",
                        )
810
                    }
811
                    None => return Self::internal_error_static("Empty response from server"),
812
                },
813
814
815
816
817
818
                Err(e) => {
                    return Self::internal_error_message(format!(
                        "Failed to get GenerateResponse: {}",
                        e
                    ))
                }
819
            }
820
821
822
        }

        if all_responses.is_empty() {
823
            return Self::internal_error_static("No responses from server");
824
825
826
827
828
829
830
831
832
833
834
        }

        // Process each response into a ChatChoice
        let mut choices = Vec::new();
        for (index, complete) in all_responses.iter().enumerate() {
            match self
                .process_single_choice(complete, index, original_request, &mut stop_decoder)
                .await
            {
                Ok(choice) => choices.push(choice),
                Err(e) => {
835
836
837
838
                    return Self::internal_error_message(format!(
                        "Failed to process choice {}: {}",
                        index, e
                    ));
839
                }
840
            }
841
842
843
844
845
846
847
848
849
850
851
852
853
        }

        // Aggregate usage information from all responses
        let total_prompt_tokens: u32 = all_responses.iter().map(|r| r.prompt_tokens as u32).sum();
        let total_completion_tokens: u32 = all_responses
            .iter()
            .map(|r| r.completion_tokens as u32)
            .sum();
        let usage = Usage {
            prompt_tokens: total_prompt_tokens,
            completion_tokens: total_completion_tokens,
            total_tokens: total_prompt_tokens + total_completion_tokens,
            completion_tokens_details: None,
854
855
        };

856
857
858
859
860
861
862
863
864
865
866
867
        // Build final ChatCompletionResponse
        let response = ChatCompletionResponse {
            id: format!("chatcmpl-{}", Uuid::new_v4()),
            object: "chat.completion".to_string(),
            created: SystemTime::now()
                .duration_since(UNIX_EPOCH)
                .unwrap_or_default()
                .as_secs(),
            model: original_request.model.clone(),
            choices,
            usage: Some(usage),
            system_fingerprint: None,
868
869
        };

870
871
872
873
        // Serialize and return JSON response
        Json(response).into_response()
    }

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
    /// Submit request and handle non-streaming response for the `/generate` endpoint
    async fn handle_non_streaming_generate(
        &self,
        mut client: SglangSchedulerClient,
        request: proto::GenerateRequest,
        original_request: &GenerateRequest,
        request_id: String,
        weight_version: String,
    ) -> Response {
        let start_time = Instant::now();

        let mut stream = match client.generate(request).await {
            Ok(stream) => stream,
            Err(e) => {
                return Self::internal_error_message(format!("Failed to start generation: {}", e))
            }
        };

        let mut final_completion: Option<proto::GenerateComplete> = None;

        while let Some(result) = stream.next().await {
            match result {
                Ok(gen_response) => match gen_response.response {
                    Some(Complete(complete)) => {
                        final_completion = Some(complete);
                        break;
                    }
                    Some(Error(err)) => {
                        return Self::internal_error_message(format!(
                            "Generation failed: {}",
                            err.message
                        ));
                    }
                    Some(Chunk(_)) | None => continue,
                },
                Err(e) => {
                    return Self::internal_error_message(format!(
                        "Failed to receive generate response: {}",
                        e
                    ))
                }
            }
        }

        let mut complete = match final_completion {
            Some(c) => c,
            None => {
                return Self::internal_error_static("No completion received from scheduler");
            }
        };

        // Create stop decoder from sampling params
        let params = original_request.sampling_params.as_ref();
        let mut stop_decoder = self.create_stop_decoder(
            params.and_then(|p| p.stop.as_ref()),
            params.and_then(|p| p.stop_token_ids.as_ref()),
            params.and_then(|p| p.skip_special_tokens).unwrap_or(true),
            params.and_then(|p| p.no_stop_trim).unwrap_or(false),
        );

        // Process tokens through stop decoder
        let outputs = match stop_decoder.process_tokens(&complete.output_ids) {
            Ok(outputs) => outputs,
            Err(e) => {
                return Self::internal_error_message(format!("Failed to process tokens: {}", e))
            }
        };

        // Accumulate text with early breaks
        let mut decoded_text = String::new();
        for output in outputs {
            match output {
                SequenceDecoderOutput::Text(t) => decoded_text.push_str(&t),
                SequenceDecoderOutput::StoppedWithText(t) => {
                    decoded_text.push_str(&t);
                    break;
                }
                SequenceDecoderOutput::Stopped => break,
                SequenceDecoderOutput::Held => {}
            }
        }

        // Flush remaining text
        if let SequenceDecoderOutput::Text(t) = stop_decoder.flush() {
            decoded_text.push_str(&t);
        }

        let output_ids = complete.output_ids.clone();

        // Build base meta_info using json! macro
        let mut meta_info = json!({
            "finish_reason": complete.finish_reason.clone(),
            "prompt_tokens": complete.prompt_tokens,
            "completion_tokens": complete.completion_tokens,
            "cached_tokens": complete.cached_tokens,
            "id": request_id,
            "weight_version": weight_version,
            "e2e_latency": start_time.elapsed().as_secs_f64(),
        });

        let meta_obj = meta_info.as_object_mut().unwrap();

        // Add matched_stop if present
        if let Some(matched) = complete.matched_stop.take() {
            use proto::generate_complete::MatchedStop;
            let matched_value = match matched {
                MatchedStop::MatchedTokenId(id) => json!(id),
                MatchedStop::MatchedStopStr(s) => json!(s),
            };
            meta_obj.insert("matched_stop".to_string(), matched_value);
        }

        let response_body = json!({
            "text": decoded_text,
            "output_ids": output_ids,
            "meta_info": meta_info,
        });

        Json(response_body).into_response()
    }

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
    /// Convert proto LogProbs to OpenAI ChatLogProbs format
    /// Note: Always decodes with skip_special_tokens=false to show actual tokens generated
    fn convert_proto_to_openai_logprobs(
        &self,
        proto_logprobs: &proto::LogProbs,
    ) -> Result<crate::protocols::spec::ChatLogProbs, String> {
        let mut content_items = Vec::new();

        // Decode token IDs to text (always with skip_special_tokens=false for logprobs)
        let token_texts: Vec<String> = proto_logprobs
            .token_ids
            .iter()
            .map(|&token_id| {
                self.tokenizer
                    .decode(&[token_id as u32], false)
                    .unwrap_or_else(|_| format!("<token_{}>", token_id))
            })
            .collect();

        // Build ChatLogProbsContent for each token
        for (i, &logprob) in proto_logprobs.token_logprobs.iter().enumerate() {
            let token_text = token_texts.get(i).cloned().unwrap_or_default();
            let bytes = Some(token_text.as_bytes().to_vec());

            // Build top_logprobs for this position
            let mut top_logprobs = Vec::new();
            if let Some(top_logprobs_entry) = proto_logprobs.top_logprobs.get(i) {
                // Decode top token IDs (always with skip_special_tokens=false)
                let top_token_texts: Vec<String> = top_logprobs_entry
                    .token_ids
                    .iter()
                    .map(|&tid| {
                        self.tokenizer
                            .decode(&[tid as u32], false)
                            .unwrap_or_else(|_| format!("<token_{}>", tid))
                    })
                    .collect();

                for (j, (&top_logprob, &_top_token_id)) in top_logprobs_entry
                    .values
                    .iter()
                    .zip(top_logprobs_entry.token_ids.iter())
                    .enumerate()
                {
                    if let Some(top_token_text) = top_token_texts.get(j) {
                        top_logprobs.push(crate::protocols::spec::TopLogProb {
                            token: top_token_text.clone(),
                            logprob: top_logprob,
                            bytes: Some(top_token_text.as_bytes().to_vec()),
                        });
                    }
                }
            }

            content_items.push(crate::protocols::spec::ChatLogProbsContent {
                token: token_text,
                logprob,
                bytes,
                top_logprobs,
            });
        }

        Ok(crate::protocols::spec::ChatLogProbs::Detailed {
            content: (!content_items.is_empty()).then_some(content_items),
        })
    }

1062
1063
1064
1065
1066
1067
    /// Process a single GenerateComplete response into a ChatChoice
    async fn process_single_choice(
        &self,
        complete: &proto::GenerateComplete,
        index: usize,
        original_request: &ChatCompletionRequest,
1068
        stop_decoder: &mut StopSequenceDecoder,
1069
1070
1071
1072
1073
1074
1075
    ) -> Result<ChatChoice, String> {
        stop_decoder.reset();
        // Decode tokens
        let outputs = stop_decoder
            .process_tokens(&complete.output_ids)
            .map_err(|e| format!("Failed to process tokens: {}", e))?;

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
        // Accumulate text with early breaks
        let mut final_text = String::new();
        for output in outputs {
            match output {
                SequenceDecoderOutput::Text(t) => final_text.push_str(&t),
                SequenceDecoderOutput::StoppedWithText(t) => {
                    final_text.push_str(&t);
                    break;
                }
                SequenceDecoderOutput::Stopped => break,
                SequenceDecoderOutput::Held => {}
            }
        }

        // Flush remaining text
        if let SequenceDecoderOutput::Text(t) = stop_decoder.flush() {
            final_text.push_str(&t);
        }

1095
1096
1097
1098
1099
1100
        // Step 1: Handle reasoning content parsing
        let mut reasoning_text: Option<String> = None;
        let mut processed_text = final_text;

        // Check if reasoning parsing is enabled and separate_reasoning is requested
        if original_request.separate_reasoning {
1101
            let pooled_parser = self
1102
                .reasoning_parser_factory
1103
1104
1105
1106
1107
1108
1109
1110
1111
                .get_pooled(&original_request.model);

            let mut parser = pooled_parser
                .lock()
                .map_err(|e| format!("Failed to acquire reasoning parser lock: {}", e))?;
            match parser.detect_and_parse_reasoning(&processed_text) {
                Ok(result) => {
                    if !result.reasoning_text.is_empty() {
                        reasoning_text = Some(result.reasoning_text);
1112
                    }
1113
1114
1115
1116
                    processed_text = result.normal_text;
                }
                Err(e) => {
                    return Err(format!("Reasoning parsing error: {}", e));
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
                }
            }
        }

        // Step 2: Handle tool call parsing
        let mut tool_calls: Option<Vec<crate::protocols::spec::ToolCall>> = None;

        // Check if tool calls should be processed
        let tool_choice_enabled = !matches!(
            &original_request.tool_choice,
            Some(ToolChoice::Value(
                crate::protocols::spec::ToolChoiceValue::None
            ))
        );

        if tool_choice_enabled && original_request.tools.is_some() {
            if let Some(parser) = self
                .tool_parser_registry
                .get_parser(&original_request.model)
            {
                match parser.parse_complete(&processed_text).await {
1138
                    Ok((normal_text, parsed_tool_calls)) => {
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
                        if !parsed_tool_calls.is_empty() {
                            let spec_tool_calls = parsed_tool_calls
                                .into_iter()
                                .map(|tc| crate::protocols::spec::ToolCall {
                                    id: tc.id,
                                    tool_type: "function".to_string(),
                                    function: crate::protocols::spec::FunctionCallResponse {
                                        name: tc.function.name,
                                        arguments: Some(
                                            serde_json::to_string(&tc.function.arguments)
                                                .unwrap_or_else(|_| "{}".to_string()),
                                        ),
                                    },
                                })
                                .collect();
                            tool_calls = Some(spec_tool_calls);
1155
                            processed_text = normal_text;
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
                        }
                    }
                    Err(e) => {
                        error!("Tool call parsing error: {}", e);
                        // Continue without tool calls rather than failing
                    }
                }
            }
        }

        // Step 3: Use finish reason directly from proto (already OpenAI-compatible string)
        let finish_reason_str = &complete.finish_reason;

        // Override finish reason if we have tool calls
        let final_finish_reason_str = if tool_calls.is_some() {
            "tool_calls"
        } else {
            finish_reason_str
        };

        // Extract matched_stop information from proto
        let matched_stop = match &complete.matched_stop {
            Some(proto::generate_complete::MatchedStop::MatchedTokenId(token_id)) => Some(
                serde_json::Value::Number(serde_json::Number::from(*token_id)),
            ),
            Some(proto::generate_complete::MatchedStop::MatchedStopStr(stop_str)) => {
                Some(serde_json::Value::String(stop_str.clone()))
            }
            None => None,
        };

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
        // Step 4: Convert output logprobs if present
        // Note: complete.input_logprobs exists in proto but is not used for chat completions
        //       (input logprobs are only used in /v1/completions endpoint with echo=true)
        let logprobs = if let Some(proto_logprobs) = &complete.output_logprobs {
            match self.convert_proto_to_openai_logprobs(proto_logprobs) {
                Ok(logprobs) => Some(logprobs),
                Err(e) => {
                    error!("Failed to convert logprobs: {}", e);
                    None
                }
            }
        } else {
            None
        };

        // Step 5: Build ChatCompletionMessage (proper response message type)
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
        let chat_message = ChatCompletionMessage {
            role: "assistant".to_string(),
            content: if processed_text.is_empty() {
                None
            } else {
                Some(processed_text)
            },
            tool_calls,
            reasoning_content: reasoning_text,
        };

1214
        // Step 6: Build ChatChoice
1215
1216
1217
        let choice = ChatChoice {
            index: index as u32,
            message: chat_message,
1218
            logprobs,
1219
1220
1221
1222
1223
1224
            finish_reason: Some(final_finish_reason_str.to_string()),
            matched_stop,
            hidden_states: None,
        };

        Ok(choice)
1225
    }
1226
1227
1228
1229
}

impl std::fmt::Debug for GrpcRouter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
1230
        let stats = self.worker_registry.stats();
1231
        f.debug_struct("GrpcRouter")
1232
            .field("workers_count", &stats.total_workers)
1233
1234
            .field("dp_aware", &self.dp_aware)
            .finish()
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
    }
}

#[async_trait]
impl RouterTrait for GrpcRouter {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    async fn health_generate(&self, _req: Request<Body>) -> Response {
1245
1246
1247
1248
1249
1250
        // TODO: Implement actual generation test for gRPC
        (
            StatusCode::NOT_IMPLEMENTED,
            "Health generate not yet implemented for gRPC",
        )
            .into_response()
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
    }

    async fn get_server_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_models(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_model_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn route_generate(
        &self,
1267
1268
1269
        headers: Option<&HeaderMap>,
        body: &GenerateRequest,
        model_id: Option<&str>,
1270
    ) -> Response {
1271
        self.route_generate_impl(headers, body, model_id).await
1272
1273
1274
1275
    }

    async fn route_chat(
        &self,
1276
        headers: Option<&HeaderMap>,
1277
        body: &ChatCompletionRequest,
1278
        model_id: Option<&str>,
1279
    ) -> Response {
1280
        self.route_chat_impl(headers, body, model_id).await
1281
1282
1283
1284
1285
    }

    async fn route_completion(
        &self,
        _headers: Option<&HeaderMap>,
1286
        _body: &CompletionRequest,
1287
        _model_id: Option<&str>,
1288
1289
1290
1291
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

1292
1293
1294
    async fn route_responses(
        &self,
        _headers: Option<&HeaderMap>,
1295
        _body: &ResponsesRequest,
1296
        _model_id: Option<&str>,
1297
1298
1299
1300
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

1301
1302
1303
1304
    async fn get_response(
        &self,
        _headers: Option<&HeaderMap>,
        _response_id: &str,
1305
        _params: &ResponsesGetParams,
1306
    ) -> Response {
1307
1308
1309
1310
1311
1312
1313
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn cancel_response(&self, _headers: Option<&HeaderMap>, _response_id: &str) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

1314
1315
1316
    async fn route_embeddings(
        &self,
        _headers: Option<&HeaderMap>,
1317
        _body: &EmbeddingRequest,
1318
1319
        _model_id: Option<&str>,
    ) -> Response {
1320
1321
1322
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

1323
1324
1325
    async fn route_rerank(
        &self,
        _headers: Option<&HeaderMap>,
1326
        _body: &RerankRequest,
1327
        _model_id: Option<&str>,
1328
    ) -> Response {
1329
1330
1331
1332
1333
1334
1335
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    fn router_type(&self) -> &'static str {
        "grpc"
    }
}
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

#[cfg(test)]
mod tests {
    use super::*;
    use crate::protocols::spec::{ChatMessage, ContentPart, ImageUrl, UserMessageContent};
    use crate::tokenizer::chat_template::ChatTemplateContentFormat;
    use serde_json::json;

    #[test]
    fn test_transform_messages_string_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Hello".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: None,
                    },
                },
                ContentPart::Text {
                    text: "World".to_string(),
                },
            ]),
            name: None,
        }];

1365
1366
1367
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should flatten multimodal content to text only
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Hello World"
        );
        assert_eq!(transformed_message["role"].as_str().unwrap(), "user");
    }

    #[test]
    fn test_transform_messages_openai_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Describe this image:".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: Some("high".to_string()),
                    },
                },
            ]),
            name: None,
        }];

1398
1399
1400
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should replace media URLs with simple type placeholders
        let content_array = transformed_message["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);

        // Text part should remain unchanged
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[0]["text"], "Describe this image:");

        // Image part should be replaced with simple type placeholder
        assert_eq!(content_array[1], json!({"type": "image"}));
    }

    #[test]
    fn test_transform_messages_simple_string_content() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Text("Simple text message".to_string()),
            name: None,
        }];

1425
1426
1427
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Simple string content should remain unchanged
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Simple text message"
        );
    }

    #[test]
    fn test_transform_messages_assistant_message() {
        let messages = vec![ChatMessage::Assistant {
            role: "assistant".to_string(),
            content: Some("Assistant response".to_string()),
            name: None,
            tool_calls: None,
            function_call: None,
            reasoning_content: None,
        }];

1450
1451
1452
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        assert_eq!(transformed_message["role"].as_str().unwrap(), "assistant");
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Assistant response"
        );
    }

    #[test]
    fn test_transform_messages_multiple_messages() {
        let messages = vec![
            ChatMessage::System {
                role: "system".to_string(),
                content: "System prompt".to_string(),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "User message".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: None,
                        },
                    },
                ]),
                name: None,
            },
        ];

1489
1490
1491
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516

        assert_eq!(result.len(), 2);

        // System message should remain unchanged
        assert_eq!(result[0]["role"].as_str().unwrap(), "system");
        assert_eq!(result[0]["content"].as_str().unwrap(), "System prompt");

        // User message should be flattened to text only
        assert_eq!(result[1]["role"].as_str().unwrap(), "user");
        assert_eq!(result[1]["content"].as_str().unwrap(), "User message");
    }

    #[test]
    fn test_transform_messages_empty_text_parts() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![ContentPart::ImageUrl {
                image_url: ImageUrl {
                    url: "https://example.com/image.jpg".to_string(),
                    detail: None,
                },
            }]),
            name: None,
        }];

1517
1518
1519
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should keep original multimodal content when no text parts exist
        assert!(transformed_message["content"].is_array());
    }

    #[test]
    fn test_transform_messages_mixed_content_types() {
        let messages = vec![
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Text("Plain text".to_string()),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "With image".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: Some("low".to_string()),
                        },
                    },
                ]),
                name: None,
            },
        ];

1553
1554
1555
        let result_string =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1556
1557
1558
1559
1560

        assert_eq!(result_string.len(), 2);
        assert_eq!(result_string[0]["content"].as_str().unwrap(), "Plain text");
        assert_eq!(result_string[1]["content"].as_str().unwrap(), "With image");

1561
1562
1563
        let result_openai =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573

        assert_eq!(result_openai.len(), 2);
        assert_eq!(result_openai[0]["content"].as_str().unwrap(), "Plain text");

        let content_array = result_openai[1]["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[1], json!({"type": "image"}));
    }
}