model_runner.py 29.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
"""ModelRunner runs the forward passes of the models."""
15

16
import gc
Cody Yu's avatar
Cody Yu committed
17
import importlib
18
import importlib.resources
19
import inspect
Shuo Yang's avatar
Shuo Yang committed
20
import json
21
22
import logging
import pkgutil
Cody Yu's avatar
Cody Yu committed
23
from functools import lru_cache
24
from typing import Optional, Type
Lianmin Zheng's avatar
Lianmin Zheng committed
25
26

import torch
27
28
29
import torch.nn as nn
from vllm.config import DeviceConfig, LoadConfig
from vllm.config import ModelConfig as VllmModelConfig
zhyncs's avatar
zhyncs committed
30
31
32
33
from vllm.distributed import (
    get_tp_group,
    init_distributed_environment,
    initialize_model_parallel,
34
    set_custom_all_reduce,
zhyncs's avatar
zhyncs committed
35
)
36
from vllm.distributed.parallel_state import in_the_same_node_as
37
from vllm.model_executor.model_loader import get_model
38
from vllm.model_executor.models import ModelRegistry
Lianmin Zheng's avatar
Lianmin Zheng committed
39

40
from sglang.srt.configs.model_config import AttentionArch, ModelConfig
Shuo Yang's avatar
Shuo Yang committed
41
from sglang.srt.layers.attention.double_sparsity_backend import DoubleSparseAttnBackend
42
43
from sglang.srt.layers.attention.flashinfer_backend import FlashInferAttnBackend
from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
Liangsheng Yin's avatar
Liangsheng Yin committed
44
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
45
from sglang.srt.layers.sampler import Sampler
46
from sglang.srt.lora.lora_manager import LoRAManager
47
from sglang.srt.managers.schedule_batch import global_server_args_dict
48
from sglang.srt.mem_cache.memory_pool import (
Shuo Yang's avatar
Shuo Yang committed
49
    DoubleSparseTokenToKVPool,
50
51
52
53
    MHATokenToKVPool,
    MLATokenToKVPool,
    ReqToTokenPool,
)
54
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
55
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
Lianmin Zheng's avatar
Lianmin Zheng committed
56
from sglang.srt.server_args import ServerArgs
57
from sglang.srt.utils import (
58
    crash_on_warnings,
59
    enable_show_time_cost,
60
    get_available_gpu_memory,
HAI's avatar
HAI committed
61
    is_hip,
62
    monkey_patch_vllm_gguf_config,
63
    monkey_patch_vllm_model_config,
64
    monkey_patch_vllm_p2p_access_check,
65
    set_cpu_offload_max_bytes,
66
)
67

Ying Sheng's avatar
Ying Sheng committed
68
logger = logging.getLogger(__name__)
Lianmin Zheng's avatar
Lianmin Zheng committed
69

Lianmin Zheng's avatar
Lianmin Zheng committed
70
71

class ModelRunner:
72
73
    """ModelRunner runs the forward passes of the models."""

Lianmin Zheng's avatar
Lianmin Zheng committed
74
75
    def __init__(
        self,
76
        model_config: ModelConfig,
77
78
79
80
81
        mem_fraction_static: float,
        gpu_id: int,
        tp_rank: int,
        tp_size: int,
        nccl_port: int,
Lianmin Zheng's avatar
Lianmin Zheng committed
82
        server_args: ServerArgs,
Lianmin Zheng's avatar
Lianmin Zheng committed
83
    ):
84
        # Parse args
Lianmin Zheng's avatar
Lianmin Zheng committed
85
86
        self.model_config = model_config
        self.mem_fraction_static = mem_fraction_static
Zhang, Liangang's avatar
Zhang, Liangang committed
87
        self.device = server_args.device
88
        self.gpu_id = gpu_id
Lianmin Zheng's avatar
Lianmin Zheng committed
89
90
        self.tp_rank = tp_rank
        self.tp_size = tp_size
Zhang, Liangang's avatar
Zhang, Liangang committed
91
        self.dist_port = nccl_port
Lianmin Zheng's avatar
Lianmin Zheng committed
92
        self.server_args = server_args
93
94
        self.is_generation = model_config.is_generation
        self.is_multimodal = model_config.is_multimodal
Ke Bao's avatar
Ke Bao committed
95

96
        # Model-specific adjustment
Ke Bao's avatar
Ke Bao committed
97
98
99
100
        if (
            self.model_config.attention_arch == AttentionArch.MLA
            and not self.server_args.disable_mla
        ):
Amos You's avatar
Amos You committed
101
            logger.info("MLA optimization is turned on. Use triton backend.")
Ke Bao's avatar
Ke Bao committed
102
103
            self.server_args.attention_backend = "triton"

Shuo Yang's avatar
Shuo Yang committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        if self.server_args.enable_double_sparsity:
            logger.info(
                "Double sparsity optimization is turned on. Use triton backend without CUDA graph."
            )
            self.server_args.attention_backend = "triton"
            self.server_args.disable_cuda_graph = True
            if self.server_args.ds_heavy_channel_type is None:
                raise ValueError(
                    "Please specify the heavy channel type for double sparsity optimization."
                )
            self.init_double_sparsity_channel_config(
                self.server_args.ds_heavy_channel_type
            )

118
        if self.is_multimodal:
119
            logger.info(
120
121
                "Automatically turn off --chunked-prefill-size and adjust --mem-fraction-static for multimodal models."
            )
122
            server_args.chunked_prefill_size = -1
Lianmin Zheng's avatar
Lianmin Zheng committed
123
            self.mem_fraction_static *= 0.95
124
            # TODO: qwen2-vl does not support radix cache now, set disable_radix_cache=True automatically
Yineng Zhang's avatar
Yineng Zhang committed
125
126
127
            if self.model_config.hf_config.architectures == [
                "Qwen2VLForConditionalGeneration"
            ]:
128
                server_args.disable_radix_cache = True
129

130
131
132
133
        # Global vars
        if server_args.show_time_cost:
            enable_show_time_cost()
        if server_args.disable_disk_cache:
134
135
            from outlines.caching import disable_cache

136
137
            disable_cache()

138
139
        global_server_args_dict.update(
            {
140
141
                "attention_backend": server_args.attention_backend,
                "sampling_backend": server_args.sampling_backend,
142
                "triton_attention_reduce_in_fp32": server_args.triton_attention_reduce_in_fp32,
Ke Bao's avatar
Ke Bao committed
143
                "disable_mla": server_args.disable_mla,
144
                "torchao_config": server_args.torchao_config,
145
                "enable_nan_detection": server_args.enable_nan_detection,
Ke Bao's avatar
Ke Bao committed
146
                "enable_dp_attention": server_args.enable_dp_attention,
147
148
            }
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
149

150
151
        set_cpu_offload_max_bytes(int(server_args.cpu_offload_gb * 1024**3))

152
        # Get memory before model loading
153
        min_per_gpu_memory = self.init_torch_distributed()
154
155

        # Load the model
156
        self.sampler = Sampler()
157
        self.load_model()
158

159
        # Apply torch TP if the model supports it
160
161
162
163
164
165
166
        supports_torch_tp = getattr(self.model, "supports_torch_tp", False)
        if self.tp_size > 1 and supports_torch_tp:
            self.apply_torch_tp()
            self.torch_tp_applied = True
        else:
            self.torch_tp_applied = False

167
        # Init memory pool and attention backends
168
169
        if server_args.lora_paths is not None:
            self.init_lora_manager()
170
171
        self.init_memory_pool(
            min_per_gpu_memory,
172
            server_args.max_running_requests,
173
174
            server_args.max_total_tokens,
        )
Zhang, Liangang's avatar
Zhang, Liangang committed
175
176
177
178
179
        if self.device == "cuda":
            self.init_cublas()
            self.init_attention_backend()
            self.init_cuda_graphs()
        else:
180
            self.cuda_graph_runner = None
Zhang, Liangang's avatar
Zhang, Liangang committed
181
            self.init_attention_backend()
182
183

    def init_torch_distributed(self):
184
        logger.info("Init torch distributed begin.")
Lianmin Zheng's avatar
Lianmin Zheng committed
185
        # Init torch distributed
186
        torch.get_device_module(self.device).set_device(self.gpu_id)
Zhang, Liangang's avatar
Zhang, Liangang committed
187
188
        if self.device == "cuda":
            backend = "nccl"
189
        # ToDO(liangan1):Just use gloo to bypass the initilization fail
190
191
192
        # Need to use xccl for xpu backend in the future
        elif self.device == "xpu":
            backend = "gloo"
193
194
        elif self.device == "hpu":
            backend = "hccl"
195

196
        if not self.server_args.enable_p2p_check:
197
            monkey_patch_vllm_p2p_access_check(self.gpu_id)
198
        if self.server_args.dist_init_addr:
Zhang, Liangang's avatar
Zhang, Liangang committed
199
            dist_init_method = f"tcp://{self.server_args.dist_init_addr}"
200
        else:
Zhang, Liangang's avatar
Zhang, Liangang committed
201
            dist_init_method = f"tcp://127.0.0.1:{self.dist_port}"
202
        set_custom_all_reduce(not self.server_args.disable_custom_all_reduce)
Lianmin Zheng's avatar
Lianmin Zheng committed
203
        init_distributed_environment(
Zhang, Liangang's avatar
Zhang, Liangang committed
204
            backend=backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
205
206
            world_size=self.tp_size,
            rank=self.tp_rank,
207
            local_rank=self.gpu_id,
Zhang, Liangang's avatar
Zhang, Liangang committed
208
            distributed_init_method=dist_init_method,
Lianmin Zheng's avatar
Lianmin Zheng committed
209
210
        )
        initialize_model_parallel(tensor_model_parallel_size=self.tp_size)
211
        min_per_gpu_memory = get_available_gpu_memory(
Zhang, Liangang's avatar
Zhang, Liangang committed
212
            self.device, self.gpu_id, distributed=self.tp_size > 1
213
        )
214
        self.tp_group = get_tp_group()
215

216
217
        # Currently, there is a bug with mulit-node tensor parallelsim + padded cuda graph,
        # so we disable padding in cuda graph.
Zhang, Liangang's avatar
Zhang, Liangang committed
218
219
220
        if self.device == "cuda" and not all(
            in_the_same_node_as(self.tp_group.cpu_group, source_rank=0)
        ):
221
222
223
224
225
226
            self.server_args.disable_cuda_graph_padding = True
            logger.info(
                "Setting disable_cuda_graph_padding to True because of multi-node tensor parallelism."
            )

        # Check memory for tensor parallelism
227
        if self.tp_size > 1:
Zhang, Liangang's avatar
Zhang, Liangang committed
228
            local_gpu_memory = get_available_gpu_memory(self.device, self.gpu_id)
229
            if min_per_gpu_memory < local_gpu_memory * 0.9:
230
231
232
                raise ValueError(
                    "The memory capacity is unbalanced. Some GPUs may be occupied by other processes."
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
233

234
        return min_per_gpu_memory
235

236
237
238
239
240
241
242
243
244
245
246
247
248
    def setup_model(self):
        try:
            from vllm.config import VllmConfig

            vllm_config = VllmConfig()
            vllm_config.model_config = self.vllm_model_config
            vllm_config.load_config = self.load_config
            vllm_config.device_config = DeviceConfig(self.device)
            vllm_config.quant_config = VllmConfig._get_quantization_config(
                vllm_config.model_config, vllm_config.load_config
            )
            return get_model(vllm_config=vllm_config)
        except ImportError:
Lianmin Zheng's avatar
Lianmin Zheng committed
249
250
251
252
253
254
255
256
257
258
259
            pass

        return get_model(
            model_config=self.vllm_model_config,
            load_config=self.load_config,
            device_config=DeviceConfig(self.device),
            parallel_config=None,
            scheduler_config=None,
            lora_config=None,
            cache_config=None,
        )
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    def get_model_config_params(self):
        sig = inspect.signature(VllmModelConfig.__init__)
        params = {
            "model": self.server_args.model_path,
            "quantization": self.server_args.quantization,
            "tokenizer": None,
            "tokenizer_mode": None,
            "trust_remote_code": self.server_args.trust_remote_code,
            "dtype": self.server_args.dtype,
            "seed": self.server_args.random_seed,
            "skip_tokenizer_init": True,
        }

        if "task" in sig.parameters:
            params["task"] = ""

        return params

Lianmin Zheng's avatar
Lianmin Zheng committed
279
    def load_model(self):
280
        logger.info(
Zhang, Liangang's avatar
Zhang, Liangang committed
281
            f"Load weight begin. avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
282
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
283
284
285

        # This can reduce thread conflicts and speed up weight loading.
        torch.set_num_threads(1)
Zhang, Liangang's avatar
Zhang, Liangang committed
286
287
288
289
290
291
292
293
        if self.device == "cuda":
            if torch.cuda.get_device_capability()[0] < 8:
                logger.info(
                    "Compute capability below sm80. Use float16 due to lack of bfloat16 support."
                )
                self.server_args.dtype = "float16"
                if torch.cuda.get_device_capability()[1] < 5:
                    raise RuntimeError("SGLang only supports sm75 and above.")
Lianmin Zheng's avatar
Lianmin Zheng committed
294

Lianmin Zheng's avatar
Lianmin Zheng committed
295
        # Prepare the vllm model config
296
297
298
299
        self.load_config = LoadConfig(
            load_format=self.server_args.load_format,
            download_dir=self.server_args.download_dir,
        )
300
        monkey_patch_vllm_model_config()
301
302
        if self.server_args.load_format == "gguf":
            monkey_patch_vllm_gguf_config()
303
        self.vllm_model_config = VllmModelConfig(**self.get_model_config_params())
304
        if self.model_config.model_override_args is not None:
305
            self.vllm_model_config.hf_config.update(
306
                self.model_config.model_override_args
307
            )
308

309
310
        self.model = self.setup_model()

311
        self.sliding_window_size = (
312
313
            self.model.get_attention_sliding_window_size()
            if hasattr(self.model, "get_attention_sliding_window_size")
314
315
            else None
        )
316
        self.dtype = self.vllm_model_config.dtype
317

318
        logger.info(
319
            f"Load weight end. "
320
            f"type={type(self.model).__name__}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
321
            f"dtype={self.dtype}, "
Zhang, Liangang's avatar
Zhang, Liangang committed
322
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
323
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
324

Chayenne's avatar
Chayenne committed
325
326
    def update_weights_from_disk(self, model_path: str, load_format: str):
        """Update engine weights online from disk."""
327
328
329
330
331
332
333
334
        from vllm.model_executor.model_loader.loader import (
            DefaultModelLoader,
            device_loading_context,
            get_model_loader,
        )
        from vllm.model_executor.model_loader.utils import set_default_torch_dtype

        logger.info(
Chayenne's avatar
Chayenne committed
335
            f"Update engine weights online from disk begin. "
Zhang, Liangang's avatar
Zhang, Liangang committed
336
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
337
338
        )

Zhang, Liangang's avatar
Zhang, Liangang committed
339
        target_device = torch.device(self.device)
340
341

        try:
342
343
344
            model_config_params = self.get_model_config_params()
            model_config_params["model"] = model_path
            vllm_model_config = VllmModelConfig(**model_config_params)
345
        except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
346
347
            message = f"Failed to load model config: {e}."
            return False, message
348
349
350
351
352
353

        load_config = LoadConfig(load_format=load_format)

        # Only support vllm DefaultModelLoader for now
        loader = get_model_loader(load_config)
        if not isinstance(loader, DefaultModelLoader):
Lianmin Zheng's avatar
Lianmin Zheng committed
354
355
            message = f"Failed to get model loader: {loader}."
            return False, message
356
357
358

        def get_weight_iter(config):
            iter = loader._get_weights_iterator(
359
360
361
362
363
364
365
                DefaultModelLoader.Source(
                    config.model,
                    revision=config.revision,
                    fall_back_to_pt=getattr(
                        self.model, "fall_back_to_pt_during_load", True
                    ),
                )
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
            )
            return iter

        def model_load_weights(model, iter):
            model.load_weights(iter)
            for _, module in self.model.named_modules():
                quant_method = getattr(module, "quant_method", None)
                if quant_method is not None:
                    with device_loading_context(module, target_device):
                        quant_method.process_weights_after_loading(module)
            return model

        with set_default_torch_dtype(vllm_model_config.dtype):
            try:
                iter = get_weight_iter(vllm_model_config)
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
382
                message = f"Failed to get weights iterator: {e}."
383
384
385
386
                return False, message
            try:
                model = model_load_weights(self.model, iter)
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
387
388
389
                message = (
                    f"Failed to update weights: {e}.\nRolling back to original weights."
                )
390
391
392
393
394
395
396
397
398
399
400
401
402
                del iter
                gc.collect()
                iter = get_weight_iter(self.vllm_model_config)
                self.model = model_load_weights(self.model, iter)
                return False, message

        self.model = model
        self.server_args.model_path = model_path
        self.server_args.load_format = load_format
        self.vllm_model_config = vllm_model_config
        self.load_config = load_config
        self.model_config.path = model_path

403
        logger.info("Update weights end.")
Lianmin Zheng's avatar
Lianmin Zheng committed
404
        return True, "Succeeded to update model weights."
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    def get_weights_by_name(
        self, name: str, truncate_size: int = 100
    ) -> Optional[torch.Tensor]:
        """Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face.

        Only used for unit test with an unoptimized performance.
        For optimized performance, please use torch.save and torch.load.
        """
        # TODO: (chenyang) Add support for Qwen models.
        try:
            return self.model.get_weights_by_name(
                name, truncate_size, tp_size=self.tp_size
            )
        except Exception as e:
            logger.error(f"Error when getting parameter {name}: {e}")
            return None

423
424
425
426
427
428
429
430
431
432
433
    def init_lora_manager(self):
        self.lora_manager = LoRAManager(
            base_model=self.model,
            lora_paths=self.server_args.lora_paths,
            base_hf_config=self.model_config.hf_config,
            max_loras_per_batch=self.server_args.max_loras_per_batch,
            load_config=self.load_config,
            dtype=self.dtype,
        )
        logger.info("LoRA manager ready.")

434
    def profile_max_num_token(self, total_gpu_memory: int):
435
        available_gpu_memory = get_available_gpu_memory(
Zhang, Liangang's avatar
Zhang, Liangang committed
436
            self.device, self.gpu_id, distributed=self.tp_size > 1
437
        )
438
439
        if (
            self.model_config.attention_arch == AttentionArch.MLA
Ke Bao's avatar
Ke Bao committed
440
            and not self.server_args.disable_mla
441
442
443
444
        ):
            cell_size = (
                (self.model_config.kv_lora_rank + self.model_config.qk_rope_head_dim)
                * self.model_config.num_hidden_layers
445
                * torch._utils._element_size(self.kv_cache_dtype)
446
447
448
449
450
451
452
            )
        else:
            cell_size = (
                self.model_config.get_num_kv_heads(self.tp_size)
                * self.model_config.head_dim
                * self.model_config.num_hidden_layers
                * 2
453
                * torch._utils._element_size(self.kv_cache_dtype)
454
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
455
456
457
        rest_memory = available_gpu_memory - total_gpu_memory * (
            1 - self.mem_fraction_static
        )
458
        max_num_token = int(rest_memory * (1 << 30) // cell_size)
Lianmin Zheng's avatar
Lianmin Zheng committed
459
460
        return max_num_token

461
    def init_memory_pool(
462
463
        self,
        total_gpu_memory: int,
464
465
        max_num_reqs: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
466
    ):
467
468
469
        if self.server_args.kv_cache_dtype == "auto":
            self.kv_cache_dtype = self.dtype
        elif self.server_args.kv_cache_dtype == "fp8_e5m2":
HAI's avatar
HAI committed
470
471
472
473
            if is_hip():  # Using natively supported format
                self.kv_cache_dtype = torch.float8_e5m2fnuz
            else:
                self.kv_cache_dtype = torch.float8_e5m2
474
475
476
477
478
        else:
            raise ValueError(
                f"Unsupported kv_cache_dtype: {self.server_args.kv_cache_dtype}."
            )

479
        self.max_total_num_tokens = self.profile_max_num_token(total_gpu_memory)
480
481
        if max_total_tokens is not None:
            if max_total_tokens > self.max_total_num_tokens:
482
                logging.warning(
483
484
485
486
487
                    f"max_total_tokens={max_total_tokens} is larger than the profiled value "
                    f"{self.max_total_num_tokens}. "
                    f"Use the profiled value instead."
                )
            self.max_total_num_tokens = min(self.max_total_num_tokens, max_total_tokens)
488

489
        if self.max_total_num_tokens <= 0:
490
            raise RuntimeError(
491
                "Not enough memory. Please try to increase --mem-fraction-static."
492
            )
493

Liangsheng Yin's avatar
Liangsheng Yin committed
494
        if max_num_reqs is None:
495
496
497
498
499
500
501
            max_num_reqs = min(
                max(
                    int(
                        self.max_total_num_tokens / self.model_config.context_len * 512
                    ),
                    2048,
                ),
502
                4096,
Liangsheng Yin's avatar
Liangsheng Yin committed
503
504
505
            )

        self.req_to_token_pool = ReqToTokenPool(
506
507
            size=max_num_reqs + 1,
            max_context_len=self.model_config.context_len + 4,
Zhang, Liangang's avatar
Zhang, Liangang committed
508
            device=self.device,
509
            use_records=False,
Lianmin Zheng's avatar
Lianmin Zheng committed
510
        )
511
512
        if (
            self.model_config.attention_arch == AttentionArch.MLA
Ke Bao's avatar
Ke Bao committed
513
            and not self.server_args.disable_mla
514
515
516
        ):
            self.token_to_kv_pool = MLATokenToKVPool(
                self.max_total_num_tokens,
517
                dtype=self.kv_cache_dtype,
518
519
520
                kv_lora_rank=self.model_config.kv_lora_rank,
                qk_rope_head_dim=self.model_config.qk_rope_head_dim,
                layer_num=self.model_config.num_hidden_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
521
                device=self.device,
522
            )
Shuo Yang's avatar
Shuo Yang committed
523
524
525
526
527
528
529
530
531
532
        elif self.server_args.enable_double_sparsity:
            self.token_to_kv_pool = DoubleSparseTokenToKVPool(
                self.max_total_num_tokens,
                dtype=self.kv_cache_dtype,
                head_num=self.model_config.get_num_kv_heads(self.tp_size),
                head_dim=self.model_config.head_dim,
                layer_num=self.model_config.num_hidden_layers,
                device=self.device,
                heavy_channel_num=self.server_args.ds_heavy_channel_num,
            )
533
534
535
        else:
            self.token_to_kv_pool = MHATokenToKVPool(
                self.max_total_num_tokens,
536
                dtype=self.kv_cache_dtype,
537
538
539
                head_num=self.model_config.get_num_kv_heads(self.tp_size),
                head_dim=self.model_config.head_dim,
                layer_num=self.model_config.num_hidden_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
540
                device=self.device,
541
            )
542
        logger.info(
543
            f"Memory pool end. "
Zhang, Liangang's avatar
Zhang, Liangang committed
544
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
545
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
546

Lianmin Zheng's avatar
Lianmin Zheng committed
547
548
549
550
551
552
553
554
555
    def init_cublas(self):
        """We need to run a small matmul to init cublas. Otherwise, it will raise some errors later."""
        dtype = torch.float16
        device = "cuda"
        a = torch.ones((16, 16), dtype=dtype, device=device)
        b = torch.ones((16, 16), dtype=dtype, device=device)
        c = a @ b
        return c

556
557
558
559
560
561
562
563
    def init_attention_backend(self):
        """Init attention kernel backend."""
        if self.server_args.attention_backend == "flashinfer":
            self.attn_backend = FlashInferAttnBackend(self)
        elif self.server_args.attention_backend == "triton":
            assert self.sliding_window_size is None, (
                "Window attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
564
            )
565
            assert not self.model_config.is_encoder_decoder, (
566
567
568
                "Cross attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
            )
Shuo Yang's avatar
Shuo Yang committed
569
570
571
572
            if self.server_args.enable_double_sparsity:
                self.attn_backend = DoubleSparseAttnBackend(self)
            else:
                self.attn_backend = TritonAttnBackend(self)
573
        else:
574
575
            raise ValueError(
                f"Invalid attention backend: {self.server_args.attention_backend}"
576
            )
577

Shuo Yang's avatar
Shuo Yang committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    def init_double_sparsity_channel_config(self, selected_channel):

        selected_channel = "." + selected_channel + "_proj"
        self.sorted_channels = []
        # load channel config
        with open(self.server_args.ds_channel_config_path, "r") as f:
            channel_config = json.load(f)

        for i in range(self.model_config.num_hidden_layers):
            key = "model.layers." + str(i) + ".self_attn" + selected_channel
            self.sorted_channels.append(
                torch.tensor(channel_config[key])[
                    :, : self.server_args.ds_heavy_channel_num
                ]
                .contiguous()
                .cuda()
            )

596
    def init_cuda_graphs(self):
597
        """Capture cuda graphs."""
598
599
600
601
        from sglang.srt.model_executor.cuda_graph_runner import CudaGraphRunner

        self.cuda_graph_runner = None

602
603
604
605
        if not self.is_generation:
            # TODO: Currently, cuda graph only captures decode steps, which only exists for generation models
            return

606
607
        if self.server_args.disable_cuda_graph:
            return
608

609
        logger.info("Capture cuda graph begin. This can take up to several minutes.")
610
        self.cuda_graph_runner = CudaGraphRunner(self)
611

612
613
614
615
616
617
618
    def apply_torch_tp(self):
        logger.info(f"Enabling torch tensor parallelism on {self.tp_size} devices.")
        from sglang.srt.model_parallel import tensor_parallel

        device_mesh = torch.distributed.init_device_mesh(self.device, (self.tp_size,))
        tensor_parallel(self.model, device_mesh)

619
    def forward_decode(self, forward_batch: ForwardBatch):
620
        if self.cuda_graph_runner and self.cuda_graph_runner.can_run(forward_batch):
621
            return self.cuda_graph_runner.replay(forward_batch)
622

623
624
        forward_batch.positions = (forward_batch.seq_lens - 1).to(torch.int64)
        self.attn_backend.init_forward_metadata(forward_batch)
625
        return self.model.forward(
626
            forward_batch.input_ids, forward_batch.positions, forward_batch
Lianmin Zheng's avatar
Lianmin Zheng committed
627
628
        )

629
    def forward_extend(self, forward_batch: ForwardBatch):
630
        self.attn_backend.init_forward_metadata(forward_batch)
631
        if self.is_generation:
Rin Intachuen's avatar
Rin Intachuen committed
632
633
634
635
636
637
638
639
640
641
642
            if forward_batch.input_embeds is None:
                return self.model.forward(
                    forward_batch.input_ids, forward_batch.positions, forward_batch
                )
            else:
                return self.model.forward(
                    forward_batch.input_ids,
                    forward_batch.positions,
                    forward_batch,
                    input_embeds=forward_batch.input_embeds.bfloat16(),
                )
643
644
645
        else:
            # Only embedding models have get_embedding parameter
            return self.model.forward(
646
647
648
                forward_batch.input_ids,
                forward_batch.positions,
                forward_batch,
649
650
                get_embedding=True,
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
651

Ke Bao's avatar
Ke Bao committed
652
    def forward_idle(self, forward_batch: ForwardBatch):
653
654
655
        if self.cuda_graph_runner and self.cuda_graph_runner.can_run(forward_batch):
            return self.cuda_graph_runner.replay(forward_batch)

Ke Bao's avatar
Ke Bao committed
656
657
658
659
        return self.model.forward(
            forward_batch.input_ids, forward_batch.positions, forward_batch
        )

660
661
662
663
664
    def forward(self, forward_batch: ForwardBatch) -> LogitsProcessorOutput:
        if forward_batch.forward_mode.is_decode():
            return self.forward_decode(forward_batch)
        elif forward_batch.forward_mode.is_extend():
            return self.forward_extend(forward_batch)
Ke Bao's avatar
Ke Bao committed
665
666
        elif forward_batch.forward_mode.is_idle():
            return self.forward_idle(forward_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
667
        else:
668
            raise ValueError(f"Invaid forward mode: {forward_batch.forward_mode}")
669

670
671
672
673
    def sample(
        self, logits_output: LogitsProcessorOutput, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        sampling_info = forward_batch.sampling_info
674
675
676
677
678
679
680
681
682
        if sampling_info.sampling_info_done:
            # Overlap mode: the function update_regex_vocab_mask was executed
            # in process_batch_result of the last batch.
            if sampling_info.grammars:
                sampling_info.sampling_info_done.wait()
        else:
            # Normal mode: Put CPU-heavy tasks here. They will be overlapped with the forward pass.
            sampling_info.update_regex_vocab_mask()
            sampling_info.update_penalties()
683
684
685
686
687
688
689
        logits = self.apply_logits_bias(logits_output.next_token_logits, sampling_info)

        # Sample the next tokens.
        next_token_ids = self.sampler(logits, sampling_info)
        return next_token_ids

    def apply_logits_bias(self, logits: torch.Tensor, sampling_info: SamplingBatchInfo):
690
691
692
693
694
695
        # Apply logit_bias
        if sampling_info.logit_bias is not None:
            logits.add_(sampling_info.logit_bias)

        # min-token, presence, frequency
        if sampling_info.linear_penalties is not None:
696
            logits.add_(sampling_info.linear_penalties)
697
698
699
700
701
702
703
704
705
706
707

        # repetition
        if sampling_info.scaling_penalties is not None:
            logits = torch.where(
                logits > 0,
                logits / sampling_info.scaling_penalties,
                logits * sampling_info.scaling_penalties,
            )

        # Apply regex vocab_mask
        if sampling_info.vocab_mask is not None:
708
            sampling_info.apply_mask(logits=logits, vocab_mask=sampling_info.vocab_mask)
709
710
711

        return logits

Yineng Zhang's avatar
Yineng Zhang committed
712
713
714
715
716
717
718
719
720
    @property
    def model_is_mrope(self) -> bool:
        """Detect if the model has "mrope" rope_scaling type.
        mrope requires keep "rope_deltas" between prompt and decoding phases."""
        rope_scaling = getattr(self.model_config.hf_config, "rope_scaling", {})
        if rope_scaling is None:
            return False
        return rope_scaling.get("type", None) == "mrope"

721
722
723
724
725
726
727
728

@lru_cache()
def import_model_classes():
    model_arch_name_to_cls = {}
    package_name = "sglang.srt.models"
    package = importlib.import_module(package_name)
    for _, name, ispkg in pkgutil.iter_modules(package.__path__, package_name + "."):
        if not ispkg:
729
730
731
            try:
                module = importlib.import_module(name)
            except Exception as e:
732
733
734
                logger.warning(f"Ignore import error when loading {name}. {e}")
                if crash_on_warnings():
                    raise ValueError(f"Ignore import error when loading {name}. {e}")
735
                continue
736
            if hasattr(module, "EntryClass"):
737
                entry = module.EntryClass
738
739
740
                if isinstance(
                    entry, list
                ):  # To support multiple model classes in one module
741
                    for tmp in entry:
742
743
744
                        assert (
                            tmp.__name__ not in model_arch_name_to_cls
                        ), f"Duplicated model implementation for {tmp.__name__}"
745
                        model_arch_name_to_cls[tmp.__name__] = tmp
746
                else:
747
748
749
                    assert (
                        entry.__name__ not in model_arch_name_to_cls
                    ), f"Duplicated model implementation for {entry.__name__}"
750
                    model_arch_name_to_cls[entry.__name__] = entry
Qubitium's avatar
Qubitium committed
751

752
753
754
755
756
    return model_arch_name_to_cls


def load_model_cls_srt(model_arch: str) -> Optional[Type[nn.Module]]:
    model_arch_name_to_cls = import_model_classes()
Qubitium's avatar
Qubitium committed
757

758
759
760
761
762
763
764
765
766
    if model_arch not in model_arch_name_to_cls:
        raise ValueError(
            f"Unsupported architectures: {model_arch}. "
            f"Supported list: {list(model_arch_name_to_cls.keys())}"
        )
    return model_arch_name_to_cls[model_arch]


# Monkey patch model loader
Yineng Zhang's avatar
Yineng Zhang committed
767
setattr(ModelRegistry, "_try_load_model_cls", load_model_cls_srt)
768
769
770
771
setattr(ModelRegistry, "is_multimodal_model", lambda model_architectures: False)
setattr(ModelRegistry, "is_attention_free_model", lambda model_architectures: False)
setattr(ModelRegistry, "model_has_inner_state", lambda model_architectures: False)
setattr(ModelRegistry, "is_embedding_model", lambda model_architectures: False)