"src/vscode:/vscode.git/clone" did not exist on "b09b152f77b02b4d72d88030593ac9ff7ffa3d81"
Unverified Commit 99ec439d authored by Liangsheng Yin's avatar Liangsheng Yin Committed by GitHub
Browse files

Organize Attention Backends (#1547)

parent 0f4fb19b
from abc import ABC, abstractmethod
from torch import nn
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
class AttentionBackend(ABC):
"""The base class of attention backends"""
@abstractmethod
def init_forward_metadata(self, forward_batch: ForwardBatch):
"""Init the metadata for a forward pass."""
raise NotImplementedError()
def init_cuda_graph_state(self, max_bs: int):
"""Init the global shared states for cuda graph."""
raise NotImplementedError()
def init_forward_metadata_capture_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
"""Init the metadata for a forward pass for capturing a cuda graph."""
raise NotImplementedError()
def init_forward_metadata_replay_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
"""Init the metadata for a forward pass for replying a cuda graph."""
raise NotImplementedError()
def get_cuda_graph_seq_len_fill_value(self):
"""Get the fill value for padded seq lens. Typically, it is 0 or 1."""
raise NotImplementedError()
def forward(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
"""Run forward on an attention layer."""
if forward_batch.forward_mode.is_decode():
return self.forward_decode(q, k, v, layer, forward_batch)
else:
return self.forward_extend(q, k, v, layer, forward_batch)
def forward_decode(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
"""Run a forward for decode."""
raise NotImplementedError()
def forward_extend(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
"""Run a forward for extend."""
raise NotImplementedError()
......@@ -7,15 +7,14 @@ FlashInfer is faster and Triton is easier to customize.
Each backend supports two operators: extend (i.e. prefill with cached prefix) and decode.
"""
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING
import torch
import torch.nn as nn
from sglang.global_config import global_config
from sglang.srt.layers.flashinfer_utils import update_flashinfer_indices
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.layers.attention import AttentionBackend
from sglang.srt.layers.attention.flashinfer_utils import update_flashinfer_indices
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
from sglang.srt.utils import is_hip
......@@ -33,50 +32,6 @@ if not is_hip():
from flashinfer.decode import _grouped_size_compiled_for_decode_kernels
class AttentionBackend(ABC):
"""The base class of attention backends"""
@abstractmethod
def init_forward_metadata(self, forward_batch: ForwardBatch):
"""Init the metadata for a forward pass."""
raise NotImplementedError()
def init_cuda_graph_state(self, max_bs: int):
"""Init the global shared states for cuda graph."""
raise NotImplementedError()
def init_forward_metadata_capture_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
"""Init the metadata for a forward pass for capturing a cuda graph."""
raise NotImplementedError()
def init_forward_metadata_replay_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
"""Init the metadata for a forward pass for replying a cuda graph."""
raise NotImplementedError()
def get_cuda_graph_seq_len_fill_value(self):
"""Get the fill value for padded seq lens. Typically, it is 0 or 1."""
raise NotImplementedError()
def forward(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
"""Run forward on an attention layer."""
if forward_batch.forward_mode.is_decode():
return self.forward_decode(q, k, v, layer, forward_batch)
else:
return self.forward_extend(q, k, v, layer, forward_batch)
def forward_decode(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
"""Run a forward for decode."""
raise NotImplementedError()
def forward_extend(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
"""Run a forward for extend."""
raise NotImplementedError()
class FlashInferAttnBackend(AttentionBackend):
"""Flashinfer attention kernels."""
......@@ -329,151 +284,3 @@ class FlashInferAttnBackend(AttentionBackend):
)
return o.view(-1, layer.tp_q_head_num * layer.head_dim)
class TritonAttnBackend(AttentionBackend):
def __init__(self, model_runner: ModelRunner):
# Lazy import to avoid the initialization of cuda context
from sglang.srt.layers.triton_attention.decode_attention import (
decode_attention_fwd,
)
from sglang.srt.layers.triton_attention.extend_attention import (
extend_attention_fwd,
)
super().__init__()
self.decode_attention_fwd = decode_attention_fwd
self.extend_attention_fwd = extend_attention_fwd
self.num_head = (
model_runner.model_config.num_attention_heads // model_runner.tp_size
)
if global_server_args_dict.get("triton_attention_reduce_in_fp32", False):
self.reduce_dtype = torch.float32
else:
self.reduce_dtype = torch.float16
self.forward_metadata = None
self.cuda_graph_max_seq_len = model_runner.model_config.context_len
def init_forward_metadata(self, forward_batch: ForwardBatch):
"""Init auxiliary variables for triton attention backend."""
if forward_batch.forward_mode.is_decode():
start_loc = torch.zeros_like(forward_batch.seq_lens, dtype=torch.int32)
start_loc[1:] = torch.cumsum(forward_batch.seq_lens[:-1], dim=0)
total_num_tokens = torch.sum(forward_batch.seq_lens).item()
attn_logits = torch.empty(
(self.num_head, total_num_tokens),
dtype=self.reduce_dtype,
device="cuda",
)
max_seq_len = torch.max(forward_batch.seq_lens).item()
max_extend_len = None
else:
start_loc = attn_logits = max_seq_len = None
prefix_lens = forward_batch.extend_prefix_lens
max_extend_len = torch.max(forward_batch.seq_lens - prefix_lens).item()
self.forward_metadata = start_loc, attn_logits, max_seq_len, max_extend_len
def init_cuda_graph_state(self, max_bs: int):
self.cuda_graph_max_total_num_tokens = max_bs * self.cuda_graph_max_seq_len
self.cuda_graph_start_loc = torch.zeros(
(max_bs,), dtype=torch.int32, device="cuda"
)
self.cuda_graph_attn_logits = torch.empty(
(
self.num_head,
self.cuda_graph_max_total_num_tokens,
),
dtype=self.reduce_dtype,
device="cuda",
)
def init_forward_metadata_capture_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
self.forward_metadata = (
self.cuda_graph_start_loc,
self.cuda_graph_attn_logits,
self.cuda_graph_max_seq_len,
None,
)
def init_forward_metadata_replay_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
self.cuda_graph_start_loc.zero_()
self.cuda_graph_start_loc[1:bs] = torch.cumsum(seq_lens[: bs - 1], dim=0)
def get_cuda_graph_seq_len_fill_value(self):
return 1
def forward_extend(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
# TODO: reuse the buffer across layers
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = torch.empty_like(q)
forward_batch.token_to_kv_pool.set_kv_buffer(
layer.layer_id, forward_batch.out_cache_loc, k, v
)
start_loc, attn_logits, max_seq_len, max_extend_len = self.forward_metadata
self.extend_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
k.contiguous(),
v.contiguous(),
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
forward_batch.extend_seq_lens,
forward_batch.extend_start_loc,
max_extend_len,
layer.scaling,
layer.logit_cap,
)
return o
def forward_decode(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
# During torch.compile, there is a bug in rotary_emb that causes the
# output value to have a 3D tensor shape. This reshapes the output correctly.
q = q.reshape(-1, layer.tp_q_head_num * layer.qk_head_dim)
# TODO: reuse the buffer across layers
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = torch.empty_like(q)
start_loc, attn_logits, max_seq_len, max_extend_len = self.forward_metadata
forward_batch.token_to_kv_pool.set_kv_buffer(
layer.layer_id, forward_batch.out_cache_loc, k, v
)
self.decode_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
start_loc,
forward_batch.seq_lens,
attn_logits,
max_seq_len,
layer.scaling,
layer.logit_cap,
)
return o
from __future__ import annotations
from typing import TYPE_CHECKING
import torch
import torch.nn as nn
from sglang.srt.layers.attention import AttentionBackend
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
if TYPE_CHECKING:
from sglang.srt.model_executor.model_runner import ModelRunner
class TritonAttnBackend(AttentionBackend):
def __init__(self, model_runner: ModelRunner):
# Lazy import to avoid the initialization of cuda context
from sglang.srt.layers.attention.triton_ops.decode_attention import (
decode_attention_fwd,
)
from sglang.srt.layers.attention.triton_ops.extend_attention import (
extend_attention_fwd,
)
super().__init__()
self.decode_attention_fwd = decode_attention_fwd
self.extend_attention_fwd = extend_attention_fwd
self.num_head = (
model_runner.model_config.num_attention_heads // model_runner.tp_size
)
if global_server_args_dict.get("triton_attention_reduce_in_fp32", False):
self.reduce_dtype = torch.float32
else:
self.reduce_dtype = torch.float16
self.forward_metadata = None
self.cuda_graph_max_seq_len = model_runner.model_config.context_len
def init_forward_metadata(self, forward_batch: ForwardBatch):
"""Init auxiliary variables for triton attention backend."""
if forward_batch.forward_mode.is_decode():
start_loc = torch.zeros_like(forward_batch.seq_lens, dtype=torch.int32)
start_loc[1:] = torch.cumsum(forward_batch.seq_lens[:-1], dim=0)
total_num_tokens = torch.sum(forward_batch.seq_lens).item()
attn_logits = torch.empty(
(self.num_head, total_num_tokens),
dtype=self.reduce_dtype,
device="cuda",
)
max_seq_len = torch.max(forward_batch.seq_lens).item()
max_extend_len = None
else:
start_loc = attn_logits = max_seq_len = None
prefix_lens = forward_batch.extend_prefix_lens
max_extend_len = torch.max(forward_batch.seq_lens - prefix_lens).item()
self.forward_metadata = start_loc, attn_logits, max_seq_len, max_extend_len
def init_cuda_graph_state(self, max_bs: int):
self.cuda_graph_max_total_num_tokens = max_bs * self.cuda_graph_max_seq_len
self.cuda_graph_start_loc = torch.zeros(
(max_bs,), dtype=torch.int32, device="cuda"
)
self.cuda_graph_attn_logits = torch.empty(
(
self.num_head,
self.cuda_graph_max_total_num_tokens,
),
dtype=self.reduce_dtype,
device="cuda",
)
def init_forward_metadata_capture_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
self.forward_metadata = (
self.cuda_graph_start_loc,
self.cuda_graph_attn_logits,
self.cuda_graph_max_seq_len,
None,
)
def init_forward_metadata_replay_cuda_graph(
self, bs: int, req_pool_indices, seq_lens
):
self.cuda_graph_start_loc.zero_()
self.cuda_graph_start_loc[1:bs] = torch.cumsum(seq_lens[: bs - 1], dim=0)
def get_cuda_graph_seq_len_fill_value(self):
return 1
def forward_extend(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
# TODO: reuse the buffer across layers
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = torch.empty_like(q)
forward_batch.token_to_kv_pool.set_kv_buffer(
layer.layer_id, forward_batch.out_cache_loc, k, v
)
start_loc, attn_logits, max_seq_len, max_extend_len = self.forward_metadata
self.extend_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
k.contiguous(),
v.contiguous(),
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
forward_batch.extend_seq_lens,
forward_batch.extend_start_loc,
max_extend_len,
layer.scaling,
layer.logit_cap,
)
return o
def forward_decode(self, q, k, v, layer: nn.Module, forward_batch: ForwardBatch):
# During torch.compile, there is a bug in rotary_emb that causes the
# output value to have a 3D tensor shape. This reshapes the output correctly.
q = q.reshape(-1, layer.tp_q_head_num * layer.qk_head_dim)
# TODO: reuse the buffer across layers
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = torch.empty_like(q)
start_loc, attn_logits, max_seq_len, max_extend_len = self.forward_metadata
forward_batch.token_to_kv_pool.set_kv_buffer(
layer.layer_id, forward_batch.out_cache_loc, k, v
)
self.decode_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
start_loc,
forward_batch.seq_lens,
attn_logits,
max_seq_len,
layer.scaling,
layer.logit_cap,
)
return o
......@@ -22,7 +22,9 @@ import torch
import triton
import triton.language as tl
from sglang.srt.layers.triton_attention.prefill_attention import context_attention_fwd
from sglang.srt.layers.attention.triton_ops.prefill_attention import (
context_attention_fwd,
)
CUDA_CAPABILITY = torch.cuda.get_device_capability()
......
......@@ -37,7 +37,7 @@ import numpy as np
import torch
if TYPE_CHECKING:
from sglang.srt.layers.attention_backend import AttentionBackend
from sglang.srt.layers.attention import AttentionBackend
from sglang.srt.managers.schedule_batch import ImageInputs, ModelWorkerBatch
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
from sglang.srt.model_executor.model_runner import ModelRunner
......
......@@ -39,7 +39,8 @@ from vllm.model_executor.models import ModelRegistry
from sglang.srt.configs.model_config import AttentionArch, ModelConfig
from sglang.srt.constrained import disable_cache
from sglang.srt.layers.attention_backend import FlashInferAttnBackend, TritonAttnBackend
from sglang.srt.layers.attention.flashinfer_backend import FlashInferAttnBackend
from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.layers.sampler import Sampler
from sglang.srt.lora.lora_manager import LoRAManager
......
......@@ -6,8 +6,8 @@ from flashinfer import (
)
from flashinfer.decode import _grouped_size_compiled_for_decode_kernels
from sglang.srt.layers.token_attention import token_attention_fwd
from sglang.srt.layers.triton_attention.extend_attention import (
from sglang.srt.layers.attention.triton_ops.decode_attention import decode_attention_fwd
from sglang.srt.layers.attention.triton_ops.extend_attention import (
extend_attention_fwd,
redundant_attention,
)
......@@ -159,7 +159,7 @@ def test_batch_decode_with_paged_kv_cache(
b_seq_len = torch.full((batch_size,), kv_len, dtype=torch.int32).to(0)
max_len_in_batch = kv_len
other_kv_index = 0
token_attention_fwd(
decode_attention_fwd(
q,
k_buffer,
v_buffer,
......
......@@ -4,7 +4,9 @@ import unittest
import numpy as np
import torch
from sglang.srt.layers.flashinfer_utils import create_flashinfer_kv_indices_triton
from sglang.srt.layers.attention.flashinfer_utils import (
create_flashinfer_kv_indices_triton,
)
class TestCreateKvIndices(unittest.TestCase):
......
......@@ -3,12 +3,14 @@ import unittest
import torch
from sglang.srt.layers.triton_attention.decode_attention import decode_attention_fwd
from sglang.srt.layers.triton_attention.extend_attention import (
from sglang.srt.layers.attention.triton_ops.decode_attention import decode_attention_fwd
from sglang.srt.layers.attention.triton_ops.extend_attention import (
extend_attention_fwd,
redundant_attention,
)
from sglang.srt.layers.triton_attention.prefill_attention import context_attention_fwd
from sglang.srt.layers.attention.triton_ops.prefill_attention import (
context_attention_fwd,
)
class TestExtendAttention(unittest.TestCase):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment